DOI QR코드

DOI QR Code

Effect of Combined Exposure to EDTA and Zinc Pyrithione on Pyrithione Absorption in Rats

  • Jung, Dong Sik (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Jung, Guk Hwa (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Lee, Eun Ho (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Park, Hye Ran (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Kim, Ju Hwan (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Kim, Kyu-Bong (Department of Pharmacy, College of Pharmacy, Dankook University) ;
  • Kim, Hak Rim (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Kim, Hyung Gun (Department of Pharmacology, College of Medicine, Dankook University)
  • 투고 : 2019.02.18
  • 심사 : 2019.03.10
  • 발행 : 2019.04.15

초록

Zinc pyrithione (ZnPT) is a coordination complex of zinc and has been used widely as an anti-dandruff agent in shampoos. Many shampoos contain both ZnPT and EDTA, a chelating agent speculated to increase ZnPT absorption, thereby raising concerns about neurotoxicity. Here, we investigated the effect of EDTA on ZnPT absorption by direct comparison of ZnPT and pyrithione (PT) concentrations in shampoo formulations, and by pharmacokinetic analysis of ZnPT, PT, and 2-methanesulfonylpyridine (MSP), the main ZnPT metabolite, in rat plasma or urine following exposure to shampoo containing ZnPT alone or a combination of ZnPT and EDTA. Approximately 17.3% of ZnPT was converted to PT by the addition of EDTA in the shampoo formulation. Plasma ZnPT and PT concentrations were not measured up to 24 hr after treatment with shampoo containing 1% ZnPT or 1% ZnPT + 2% EDTA in all rats. However, PT amount in 24-hr urine sample, MSP concentration in plasma, and MSP amount in 24-hr urine sample were approximately 4-, 2.6-, and 2.7-fold higher, respectively, in the 1% ZnPT + 2% EDTA shampoo group than in the 1% ZnPT shampoo group. As confirmed by the formulation analysis and in vivo pharmacokinetic analysis, the exposure of ZnPT could be increased by the absorption of PT due to partial dissociation of ZnPT into PT.

키워드

참고문헌

  1. Scientific Committee on Consumer Safety (SCCS) (2014) Opinion on Zinc Pyrithione (Colipa P81).
  2. Cloyd, G.G., Wyman, M., Shadduck, J.A., Winrow, M.J. and Johnson, G.R. (1978) Ocular toxicity studies with zinc pyridinethione. Toxicol. Appl. Pharmacol., 45, 771-782. https://doi.org/10.1016/0041-008X(78)90169-2
  3. Snyder, F.H., Buehler, E.V. and Winek, C.L. (1965) Safety evaluation of zinc 2-pyridinethiol 1-oxide in a shampoo formulation. Toxicol. Appl. Pharmacol., 7, 425-437. https://doi.org/10.1016/0041-008X(65)90144-4
  4. Sahenk, Z. and Mendell, J.R. (1977) Studies on the dyingback process of peripheral nerves using bis(N-oxopyridine-2-thionato)zinc(II). Neurology, 27, 393. https://doi.org/10.1212/WNL.27.4.393
  5. Grunnet, K.S. and Dahllof, I. (2005) Environmental fate of the antifouling compound zinc pyrithione in seawater. Environ. Toxicol. Chem., 24, 3001-3006. https://doi.org/10.1897/04-627R.1
  6. Thomas, K.V. (1999) Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A, 833, 105-109. https://doi.org/10.1016/S0021-9673(98)01009-7
  7. Bao, V.W., Leung, K.M., Kwok, K.W., Zhang, A.Q. and Lui, G.C. (2008) Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Mar. Pollut. Bull., 57, 616-623. https://doi.org/10.1016/j.marpolbul.2008.03.041
  8. Bellas, J., Granmo, K. and Beiras, R. (2005) Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Mar. Pollut. Bull., 50, 1382-1385. https://doi.org/10.1016/j.marpolbul.2005.06.010
  9. Goka, K. (1999) Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish. Environ. Res., 81, 81-83. https://doi.org/10.1006/enrs.1998.3944
  10. Kobayashi, N. and Okamura, H. (2002) Effects of new antifouling compounds on the development of sea urchin. Mar. Pollut. Bull., 44, 748-751. https://doi.org/10.1016/S0025-326X(02)00052-8
  11. Koutsaftis, A. and Aoyama, I. (2006) The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ. Toxicol., 21, 432-439. https://doi.org/10.1002/tox.20202
  12. Mochida, K., Ito, K., Harino, H., Kakuno, A. and Fujii, K. (2006) Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environ. Toxicol. Chem., 25, 3058-3064. https://doi.org/10.1897/05-688R.1
  13. Mochida, K., Ito, K., Harino, H., Onduka, T., Kakuno, A. and Fujii, K. (2008) Early life-stage toxicity test for copper pyrithione and induction of skeletal anomaly in a teleost, the mummichog (Fundulus heteroclitus). Environ. Toxicol. Chem., 27, 367-374. https://doi.org/10.1897/07-176R1.1
  14. Mochida, K., Amano, H., Onduka, T., Kakuno, A. and Fujii, K. (2011) Toxicity and metabolism of copper pyrithione and its degradation product, 2,2'-dipyridyldisulfide in a marine polychaete. Chemosphere, 82, 390-397. https://doi.org/10.1016/j.chemosphere.2010.09.074
  15. Mochida, K., Ito, K., Harino, H., Tanaka, H., Onduka, T., Kakuno, A. and Fujii, K. (2009) Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPTexposed marine teleostean fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 149, 624-630. https://doi.org/10.1016/j.cbpc.2009.01.003
  16. Okamura, H., Watanabe, T., Aoyama, I. and Hasobe, M. (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere, 46, 945-951. https://doi.org/10.1016/S0045-6535(01)00204-1
  17. Onduka, T., Mochida, K., Harino, H., Ito, K., Kakuno, A. and Fujii, K. (2010) Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Arch. Environ. Contam. Toxicol., 58, 991-997. https://doi.org/10.1007/s00244-009-9430-8
  18. Howes, D. and Black, J.G. (1975) Comparative percutaneous absorption of pyrithiones. Toxicology, 5, 209-220. https://doi.org/10.1016/0300-483X(75)90118-3
  19. Gibson, W.B., Jeffcoat, A.R., Turan, T.S., Wendt, R.H., Hughes, P.F. and Twine, M.E. (1982) Zinc pyridinethione:Serum metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol., 62, 237-250. https://doi.org/10.1016/0041-008X(82)90122-3
  20. Jeffcoat, A.R., Gibson, W.B., Rodriguez, P.A., Turan, T.S., Hughes, P.F. and Twine, M.E. (1980) Zinc pyridinethione:urinary metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol., 56, 141-154. https://doi.org/10.1016/0041-008X(80)90139-8