DOI QR코드

DOI QR Code

Effect of agglomerated zirconia-toughened mullite on the mechanical properties of giant cane fiber mat epoxy laminated composites

  • Received : 2018.12.13
  • Accepted : 2019.02.20
  • Published : 2019.04.25

Abstract

This paper depicts the development and characterizations of laminated composites made with cellulosic giant cane (Arundinaria gigantea) fiber mats and epoxy resin. Zirconia-toughened mullite (ZTM) is used as a filler material in the laminated composite which was prepared from sillimanite through plasma processing technique. The mechanical characterizations of this composite have been carried out as per ASTM standards to evaluate its usability as a structural material. The effects of varying weight percentages of the filler and two different fiber orientations namely, angle-ply [$+45^{\circ}/-45^{\circ}/+45^{\circ}$] and balanced cross-ply [$0^{\circ}/90^{\circ}/0^{\circ}$] on the physical and mechanical properties such as density, microhardness, impact strength, tensile strength and interlaminar shear strength of the layered composite specimens have been investigated. The study indicates that the inclusion of zirconia-toughened mullite in the composite laminate as filler improves its mechanical properties. Moreover, the use of giant cane fiber mat in the laminate is more eco-friendly than the synthetic fibers. This research also helps in generating additional data to enrich the repository of natural fiber reinforced laminated composites.

Keywords

References

  1. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  2. Arani, A.J. and Kolahchi R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  3. Bilouei, B.S., Kolahchi, R. and Rabani, B.M. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  4. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K. and Patel, B. (2018), "Numerical study of Frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fib., 1-15.
  5. Biswas, S., Deo, B., Patnaik, A. and Satapathy, A. (2011), "Effect of fiber loading and orientation on mechanical and erosion wear behaviors of glass-epoxy composites", Polym. Compos., 32(4), 665-674. https://doi.org/10.1002/pc.21082
  6. Cruz, R.B., Juniora, E.P., Monteiroa, S.N. and Louroa, L.H. (2015), "Giant bamboo fiber reinforced epoxy composite in multilayered ballistic armor", Mat. Res., 18(2), 70-75. https://doi.org/10.1590/1516-1439.347514
  7. Cunha, J., Foltete, E. and Bouhaddi, N. (2008), "Characterization of elastic properties of pultruded profiles using model updating procedure with vibration test data", Struct. Eng. Mech., 30(4), 481-500. https://doi.org/10.12989/sem.2008.30.4.481
  8. Fiore, V., Botta, L., Scaffaro, R., Valenza, A. and Pirrotta, A. (2014b), "PLA based biocomposites reinforced with Arundo donax fillers", Compos. Sci. Technol., 105, 110-117. https://doi.org/10.1016/j.compscitech.2014.10.005
  9. Fiore, V., Scalici, T. and Valenza, A. (2014), "Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites", Carbohydr. Polym., 106, 77-83. https://doi.org/10.1016/j.carbpol.2014.02.016
  10. Fiore, V., Scalici, T., Vitale, G. and Valenza, A. (2014a), "Static and dynamic mechanical properties of Arundo Donax fillersepoxy composites", Mater. Des., 57, 456-464. https://doi.org/10.1016/j.matdes.2014.01.025
  11. Gabarron, A.M., Flores, Y.J.A., Pastor, J.J., Berna Serna, J.M., Arnold, L.C. and Medrano, F.J. (2014), "Increase of the flexural strength of construction elements made with plaster (calcium sulfate dihydrate) and common reed (Arundo donax L.)", Constr. Build. Mater., 66, 436-441. https://doi.org/10.1016/j.conbuildmat.2014.05.083
  12. Goncalves, A.M., Ferreira, J.G., Guerreiro, L. and Branco, F.A. (2015), "Experimental characterization of timber framed masonry walls cyclic behaviour", Struct. Eng. Mech., 53(2), 189-204. https://doi.org/10.12989/sem.2015.53.2.189
  13. Gurunathan, T., Mohanty, S. and Nayak, S.K. (2015), "A review of the recent developments in biocomposites based on natural fibres and their application perspectives", Compos. Part A, 77, 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007
  14. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018b), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layer wise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030
  15. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018a), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
  16. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018e), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  17. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017a), "Dynamic buckling of sensor/functionally gradedcarbon nanotube reinforced laminated plates/actuator based on sinusoidal-viscopiezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373.
  18. Jena, H., Pandit, M.K. and Pradhan, A.K. (2013), "Effect of cenosphere on mechanical properties of bamboo-epoxy composites", J. Reinf. Plast. Compos., 32(11), 794-801. https://doi.org/10.1177/0731684413476925
  19. John, M.J., Francis, B., Varughese, K.T. and Thomas, S. (2008), "Effect of chemical modification on properties of hybrid fiber biocomposites", Compos. Part A, 39(2), 352-363. https://doi.org/10.1016/j.compositesa.2007.10.002
  20. Karahancer, S., Eriskin, E., Sarioglu, O., Capali, B., Saltan, M. and Terzi, S. (2016), "Utilization of Arundo Donax in hot mix asphalt as a fiber", Constr. Build. Mater., 125, 981-986. https://doi.org/10.1016/j.conbuildmat.2016.08.147
  21. Kim, S., Jung, H., Kim, Y. and Park, C. (2018), "Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC", Struct. Eng. Mech., 65(2), 163-171. https://doi.org/10.12989/SEM.2018.65.2.163
  22. Kolahchi, R. (2017d), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  23. Kolahchi, R. and Bidgili, A.M. (2016a), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech. Engl. Ed., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  24. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  25. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017a), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 1099636217731071.
  26. Kolahchi, R., Safari, M. and Esmailpour, M. (2016 b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  27. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017c), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  28. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017b), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  29. Kushwaha, P. and Kumar, R. (2008), "Enhanced mechanical strength of BFRP composite using modified bamboos", J. Reinf. Plast. Compos., 28(23), 51-59.
  30. Manalo, A.C., Wani, E., Zukarnain, N.A., Karunasena, W. and Lau, K.T. (2015), "Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibrepolyester composites", Compos. Part B, 80, 73-83. https://doi.org/10.1016/j.compositesb.2015.05.033
  31. Mir, S.S., Nafsin, N., Hasan, M., Hasan, N. and Hassan, A. (2013), "Improvement of physico-mechanical properties of coirpolypropylene biocomposites by fiber chemical treatment", Mater. Des., 52, 251-257. https://doi.org/10.1016/j.matdes.2013.05.062
  32. Perrier, A., Touchard, F., Chocinski-Arnault, L. and Mellier, D. (2017), "Quantitative analysis by micro-CT of damage during tensile test in a woven hemp/epoxy composite after water ageing", Compos. Part A, Appl. Sci. Manuf., 102, 18-27. https://doi.org/10.1016/j.compositesa.2017.07.018
  33. Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K. and Yogesha, B. (2016), "Applications of natural fibers and its composites: An overview", Nat. Res., 7(3), 108-114. https://doi.org/10.4236/nr.2016.73011
  34. Satapathy, A.K., Jha, A.K., Mantry, S., Singh, S.K. and Patnaik, A. (2010), "Processing and characterization of jute-epoxy composites reinforced with SiC derived from rice husk", J. Reinf. Plast. Compos., 29(18), 2869-2878. https://doi.org/10.1177/0731684409341757
  35. Sawpan, M.A., Pickering, K.L. and Fernyhough, A. (2011), "Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites", Compos. Part A, Appl. Sci. Manuf., 42(3), 310-319. https://doi.org/10.1016/j.compositesa.2010.12.004
  36. Scalici, T., Fiore, V. and Valenza, A. (2016), "Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study", Compos. Part B, 94, 167-175. https://doi.org/10.1016/j.compositesb.2016.03.053
  37. Sepe, R., Bollino, F., Boccarusso, L. and Caputo, F. (2018), "Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites", Compos. Part B, 133, 210-217. https://doi.org/10.1016/j.compositesb.2017.09.030
  38. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/SCS.2017.23.6.623
  39. Shokravi, M. (2017), "Dynamic pull-in and pull-out analysis of viscoelastic nanoplates under electrostatic and Casimir forces via sinusoidal shear deformation theory", Microelectr. Rel., 71, 17-28. https://doi.org/10.1016/j.microrel.2017.02.006
  40. Yan, L., Chouw, N., Huang, L. and Kasal, B. (2016), "Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites", Constr. Build. Mater., 112, 168-182. https://doi.org/10.1016/j.conbuildmat.2016.02.182
  41. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
  42. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_2$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009