DOI QR코드

DOI QR Code

Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms

  • Shallan, Osman (Department of Structural Engineering, University of Zagazig) ;
  • Maaly, Hassan M. (Department of Structural Engineering, University of Zagazig) ;
  • Sagiroglu, Merve (Department of Civil Engineering, Technical University of Erzurum) ;
  • Hamdy, Osman (Department of Structural Engineering, University of Zagazig)
  • 투고 : 2018.11.22
  • 심사 : 2019.02.20
  • 발행 : 2019.04.25

초록

This paper performs for the first time a simultaneous optimization for members sections along with semi-rigid beam-to-column connections for space steel frames with fixed, semi-rigid, and hinged bases using a biogeography-based optimization algorithm (BBO) and a genetic algorithm (GA). Furthermore, a member's sections optimization for a fully fixed space frame is carried out. A real and accurate simulation of semi-rigid connection behavior is considered in this study, where the semi-rigid base connections are simulated using Kanvinde and Grilli (2012) nonlinear model, which considers deformations in different base connection components under the applied loads, while beam-to-column connections are modeled using the familiar Frye and Morris (1975) nonlinear polynomial model. Moreover, the $P-{\Delta}$ effect and geometric nonlinearity are considered. AISC-LRFD (2016) specification constraints of the stress and displacement are considered as well as section size fitting constraints. The optimization is applied to two benchmark space frame examples to inspect the effect of semi-rigidity on frame weight and drift using BBO and GA algorithms.

키워드

참고문헌

  1. Abdalla, K.M. and Chen, W.F. (1995), "Expanded database of semi-rigid steel connections", Comput. Struct., 56(4), 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
  2. Alqedra, M., Khalifa, A. and Arafa, M. (2015), "An intelligent tuned harmony search algorithm for optimum design of steel framed structures to AISC-LRFD", Adv. Res., 4(6), 421-40. https://doi.org/10.9734/AIR/2015/16831
  3. American Institute of Steel Construction (2016), ANSI/AISC 360-16. Specification for Structural Steel Buildings, American Institute of Steel Construction.
  4. Arafa, M., Khalifa, A. and Alqedra, M. (2011), "Design optimization of semi-rigidly connected steel frames using harmony search algorithm", M.Sc. Dissertation, Gaza University, Palestine.
  5. Artar, M. (2016), "Optimum design of braced steel frames via teaching learning based optimization", Struct. Eng. Mech., 22(4), 733-744.
  6. Artar, M. and Daloglu, A.T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503
  7. Artar, M. and Daloglu, A.T. (2016), "Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms", Neur. Comput. Appl., 29(11), 1089-1100. https://doi.org/10.1007/s00521-016-2634-8
  8. Artar, M. and Daloglu, A.T. (2015), "Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm", Steel Compos. Struct., 19(4), 1035-1053. https://doi.org/10.12989/scs.2015.19.4.1035
  9. Aydin, A.C., Kilic, M., Maali, M. and Satirotlu, M. (2015), "Experimental assessment of the semi-rigid connections behavior with angles and stiffeners", J. Constr. Steel Res., 114, 338-348. https://doi.org/10.1016/j.jcsr.2015.08.017
  10. Aydin, A.C., Maali, M., Kilic, M. and Sagiroglu, M. (2015), "Experimental investigation of sinus beams with end-plate connections", Thin-Wall. Struct., 97, 35-43. https://doi.org/10.1016/j.tws.2015.09.003
  11. Aydodu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
  12. Chisala, M.L. (1999), "Modelling M-$\phi$ curves for standard beamto-column connections", Eng. Struct., 21(12), 1066-1075 https://doi.org/10.1016/S0141-0296(98)00033-9
  13. Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with Semirigid connections and column bases", Struct. Multidiscipl. Optim., 42(5), 755-768. https://doi.org/10.1007/s00158-010-0533-7
  14. Degertekin, S.O. and Hayalioglu, M.S. (2004), "Design of nonlinear semi-rigid steel frames with semi-rigid column bases", Electr. J. Struct. Eng., 4(10), 1-16.
  15. Dhillon, B.S. and O'Malley III, J.W. (1999), "Interactive design of semirigid steel frames", J. Struct. Eng., 125(5), 556-564. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(556)
  16. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
  17. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley.
  18. Habibullah, A. (2013), SAP2000, CSI Knowledge Base.
  19. Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved particle swarm optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
  20. Hadidi, A. and Rafiee, A. (2015), "A new hybrid algorithm for simultaneous size and semi-rigid connection type Optimization of steel frames", Int. J. Steel Struct., 15(1), 89-102. https://doi.org/10.1007/s13296-015-3006-4
  21. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Compute. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006
  22. Hayalioglu, M.S. and Degertekin, S.O. (2004), "Design of nonlinear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization", Struct. Multidiscipl. Optim., 27(4), 259-271. https://doi.org/10.1007/s00158-003-0357-9
  23. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  24. Hensman, J.S. and Nethercot, D.A. (2001), "Numerical study of unbraced composite frames: Generation of data to validate Use of the wind moment method of design", J. Constr. Steel Res., 57(7), 791-809. https://doi.org/10.1016/S0143-974X(01)00008-6
  25. Kanvinde, A.M., Grilli, D.A. and Zareian, F. (2012), "Rotational stiffness of exposed column base connections: Experiments and analytical models", J. Struct. Eng., 138(5), 549-560. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000495
  26. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
  27. Kim, J.H., Ghaboussi, J. and Elnashai, A.S. (2010), "Mechanical and informational modeling of steel beam-to-column connections", Eng. Struct., 32(2), 449-458. https://doi.org/10.1016/j.engstruct.2009.10.007
  28. Maali, M., Aydin, A.C. and Sagiroglu, M. (2015), "Investigation of innovative steel runway beam in industrial building", Sadhan. 40(7), 2239-2251. https://doi.org/10.1007/s12046-015-0406-2
  29. Maali, M., Kilic, M. and Aydin, A.C. (2016), "Experimental model of the behaviour of boltedangles connections with stiffeners", Int. J. Steel Struct., 16(3), 719-733. https://doi.org/10.1007/s13296-015-0183-0
  30. Maali, M., Kilic, M., Sagiroglu, M. and Aydin, A.C. (2017), "Experimental model for predicting the semi-rigid connections' behaviour with angles and stiffeners", Adv. Struct. Engineering 20(6), 884-95. https://doi.org/10.1177/1369433216665621
  31. Maali, M., Sagiroglu, M. and Solak, M.S. (2018), "Experimental behavior of screwed beam-to-column connections in coldformed steel frames", Arab. J. Geosci., 11(9), 205. https://doi.org/10.1007/s12517-018-3540-4
  32. Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using big bang-big crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
  33. Sagiroglu, M. and Aydin, A.C. (2015), "Design and analysis of non-linear space frames with semi-rigid connections", Steel Compos. Struct., 18(6), 1405-1421. https://doi.org/10.12989/scs.2015.18.6.1405
  34. Sagiroglu, M., Maali, M., Kilic, M. and Aydin, A.C. (2018), "A novel approach for bolted T-stub connections", Int. J. Steel Struct., 18(3), 891-909. https://doi.org/10.1007/s13296-018-0034-x
  35. Sedat, M., Degertekin, S. and Gorgun, H. (2004), "Design of semirigid planar steel frames according to Turkish steel design code", J. Eng. Nat. Sci., 412, 101-116.
  36. Shallan, O., Hassan, M.M. and Hamdy, O. (2018), "Simultaneous design optimization of semi-rigid plane steel frames with semirigid bases using bees and genetic algorithms", Int. J. Eng. Technol., 10(6), 1641-1660. https://doi.org/10.21817/ijet/2018/v10i6/181006003
  37. Shallan, O., Hassan, M.M. and Hamdy, O. (2018), "A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms", Struct. Eng. Mech., 66(2), 173-183. https://doi.org/10.12989/SEM.2018.66.2.173
  38. Simon, D. (2008), "Biogeography-based optimization", IEEE Trans. Evolut. Comput., 12(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004
  39. Wu, Z., Zhang, S. and Jiang, S.F. (2012), "Simulation of tensile bolts in finite element modeling of semi-rigid beam-to-column connections." Int. J. Steel Struct., 12(3), 339-350. https://doi.org/10.1007/s13296-012-3004-8
  40. Yassami, M. and Ashtari, P. (2015), "Using fuzzy genetic algorithm for the weight optimization of steel frames with semirigid connections", Int. J. Steel Struct., 15(1), 63-73. https://doi.org/10.1007/s13296-014-1105-2

피인용 문헌

  1. Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.205
  2. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795