DOI QR코드

DOI QR Code

Hysteresis characterization and identification of the normalized Bouc-Wen model

  • Li, Zongjing (School of Civil Engineering, Southeast University) ;
  • Shu, Ganping (School of Civil Engineering, Southeast University)
  • Received : 2018.11.17
  • Accepted : 2019.02.20
  • Published : 2019.04.25

Abstract

By normalizing the internal hysteresis variable and eliminating the redundant parameter, the normalized Bouc-Wen model is considered to be an improved and more reasonable form of the Bouc-Wen model. In order to facilitate application and further research of the normalized Bouc-Wen model, some key aspects of the model need to be uncovered. In this paper, hysteresis characterization of the normalized Bouc-Wen model is first studied with respect to the model parameters, which reveals the influence of each model parameter to the shape of the hysteresis loops. The parameter identification scheme is then proposed based on an improved genetic algorithm (IGA), and verified by experimental test data. It is proved that the proposed method can be an efficacious tool for identification of the model parameters by matching the reconstructed hysteresis loops with the target hysteresis loops. Meanwhile, the IGA is shown to outperform the standard GA. Finally, a simplified identification method is proposed based on parameter sensitivity, which indicates that the efficiency of the identification process can be greatly enhanced while maintaining comparable accuracy if the low-sensitivity parameters are reasonably restricted to narrower ranges.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. Alcan, P. and Basligil, H. (2012), "A genetic algorithm application using fuzzy processing times in non-identical parallel machine scheduling problem", Adv. Eng. Softw., 45(1), 272-280. https://doi.org/10.1016/j.advengsoft.2011.10.004
  2. Alessandri, S., Giannini, R., Paolacci, F. and Malena, M. (2015), "Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: Preliminary tests and analyses", Eng. Struct., 98, 251-262. https://doi.org/10.1016/j.engstruct.2015.03.032
  3. Badrakhan, F. (1987), "Rational study of hysteretic systems under stationary random excitation", Int. J. Nonlin. Mech., 22(4), 312-325. https://doi.org/10.1016/0020-7462(87)90024-2
  4. Badrakhan, F. (1988), "Dynamic analysis of yielding and hysteretic system by polynomial approximation", J. Sound Vibr., 125(1), 23-42. https://doi.org/10.1016/0022-460X(88)90412-9
  5. Benavent-Climent, A. (2010), "A brace-type seismic damper based on yielding the walls of hollow structural sections", Eng. Struct., 32(4), 1113-1122. https://doi.org/10.1016/j.engstruct.2009.12.037
  6. Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of bucklingrestrained braces, J. Struct. Eng., 130(6), 880-894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880)
  7. Bolshakov, G.V. and Lapovok, A.J. (1996), "A Preisach model for magnetoelastic hysteresis", J. Magn. Magn. Mater., 162(1), 112-116. https://doi.org/10.1016/0304-8853(96)00073-X
  8. Bouc, R. (1967), "Forced vibration of mechanical systems with hysteresis", Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.
  9. Chan, R.W.K., Albermani, F. and Williams, M.S. (2009), "Evaluation of yielding shear panel device for passive energy dissipation", J. Constr. Steel Res., 65(2), 260-268. https://doi.org/10.1016/j.jcsr.2008.03.017
  10. Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vibr., 314(3), 571-585. https://doi.org/10.1016/j.jsv.2008.01.018
  11. Chen, X., Li, J., Li, Y. and Gu, X. (2016), "Lyapunov-based semiactive control of adaptive base isolation system employing magnetorheological elastomer base isolators", Earthq. Struct., 11(6), 1077-1099. https://doi.org/10.12989/eas.2016.11.6.1077
  12. Chen, Z., Ge, H. and Usami, T. (2006), "Hysteretic model of stiffened shear panel dampers", J. Struct. Eng., 132(3), 478-483. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:3(478)
  13. Dao, S.D., Abhary, K. and Marian, R. (2017), "A bibliometric analysis of genetic algorithms throughout the history", Comput. Ind. Eng., 110, 395-403. https://doi.org/10.1016/j.cie.2017.06.009
  14. Davidenkov, N.N. (1939), "Hysteretic property of the ferrous metal", Tech. Phys., 8, 483-489.
  15. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017
  16. Deng, K., Pan, P., Li, W. and Xue, Y. (2015), "Development of a buckling restrained shear panel damper", J. Constr. Steel Res., 106, 311-321. https://doi.org/10.1016/j.jcsr.2015.01.004
  17. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York, U.S.A.
  18. Hamby, D.M. (1994), "A review of techniques for parameter sensitivity analysis of environmental models", Environ. Monit. Assess., 32(2), 135-154. https://doi.org/10.1007/BF00547132
  19. Hann, C.E., Singh-Levett, I., Deam, B.L., Mander, J.B. and Chase, J.G. (2009), "Real-time system identification of a nonlinear four-story steel frame structure-application to structural health monitoring", IEEE Sens. J., 9(11), 1339-1346. https://doi.org/10.1109/JSEN.2009.2022434
  20. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan, U.S.A.
  21. Ikhouane, F. and Rodellar, J. (2007), Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model, John Wiley & Sons, Ltd., Chichester, West Sussex, U.K.
  22. Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech.-Trans. ASME, 71(3), 342-349. https://doi.org/10.1115/1.1668082
  23. Mohagheghian, K. and Mohammadi, R.K. (2017), "Comparison of online model updating methods in pseudo-dynamic hybrid simulations of TADAS frames", Bull. Earthq. Eng., 15(10), 1-22. https://doi.org/10.1007/s10518-016-9948-x
  24. Nakashima, M., Akazawa, T. and Tsuji, B. (1995), "Strainhardening behavior of shear panels made of low-yield steel. II: model", J. Struct. Eng., 121(12), 1750-1757. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1750)
  25. Rahimi, S. and Soltani, M. (2017), "Expected extreme value of pounding force between two adjacent buildings", Struct. Eng. Mech., 61(2), 183-192. https://doi.org/10.12989/sem.2017.61.2.183
  26. Saeedi, F., Shabakhty, N. and Mousavi, S.R. (2016), "Seismic assessment of steel frames with triangular-plate added damping and stiffness devices", J. Constr. Steel Res., 125, 15-25. https://doi.org/10.1016/j.jcsr.2016.06.011
  27. Sengupta, P. and Li, B. (2013), "Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement", Eng. Struct., 46, 392-406. https://doi.org/10.1016/j.engstruct.2012.08.003
  28. Shampine, L.F. and Reichelt, M.W. (1997), "The MATLAB ODE Suite", SIAM J. Sci. Comput., 18(1), 1-22. https://doi.org/10.1137/S1064827594276424
  29. Shih, M.H. and Sung, W.P. (2005), "A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness", Comput. Struct., 83(12-13), 895-908. https://doi.org/10.1016/j.compstruc.2004.11.012
  30. Sireteanu, T., Mitu, A.M., Giuclea, M. and Solomon, O. (2014), "A comparative study of the dynamic behavior of Ramberg-Osgood and Bouc-Wen hysteresis models with application to seismic protection devices", Eng. Struct., 76, 255-269. https://doi.org/10.1016/j.engstruct.2014.07.002
  31. Spencer, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model of a magnetorheological damper", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  32. Srinivas, M. and Patnaik, L.M. (1994), "Adaptive probabilities of crossover and mutation in genetic algorithms", IEEE Trans. Syst. Man Cybern., 24(4), 656-667. https://doi.org/10.1109/21.286385
  33. Tena-Colunga, A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-821. https://doi.org/10.1016/S0141-0296(97)00165-X
  34. Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectr., 9(3), 505-528. https://doi.org/10.1193/1.1585727
  35. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263.
  36. Xu, L.Y., Nie, X., Fan, J.S. (2016), "Cyclic behaviour of lowyield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/j.engstruct.2016.08.002
  37. Yang, S. and Chen, Y. (1992), "The bifurcations and singularities of the parameterical vibration in a system with Davidenkov's hysteretic nonlinearity", Mech. Res. Commun., 19(4), 267-272. https://doi.org/10.1016/0093-6413(92)90043-A
  38. Zhang, H., Foliente, G.C., Yang, Y. and Ma, F. (2002), "Parameter identification of inelastic structures under dynamic loads", Earthq. Eng. Struct. Dyn., 31(5), 1113-1130. https://doi.org/10.1002/eqe.151
  39. Zitzler, E., Deb, K. and Thiele, L. (2014), "Comparison of multiobjective evolutionary algorithms: Empirical results", Evol. Comput., 8(2), 173-195. https://doi.org/10.1162/106365600568202