References
- Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21(3), 792-806. https://doi.org/10.1007/s12205-016-0149-6
- Arici, M. and Granata, M.F. (2011), "Generalized curved beam on elastic foundation solved by transfer matrix method", Struct. Eng. Mech., 40(2), 279-295. https://doi.org/10.12989/sem.2011.40.2.279
- Attarnejad, R. and Shahba, A. (2011), "Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution", Meccan., 46(6), 1267-1281. https://doi.org/10.1007/s11012-010-9383-z
- Banerjee, J. and Kennedy, D. (2014), "Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects", J. Sound Vibr., 333(26), 7299-7312. https://doi.org/10.1016/j.jsv.2014.08.019
- Banerjee, J., Su, H. and Jackson, D. (2006), "Free vibration of rotating tapered beams using the dynamic stiffness method", J. Sound Vibr., 298(4-5), 1034-1054. https://doi.org/10.1016/j.jsv.2006.06.040
- Boiangiu, M., Ceausu, V. and Untaroiu, C.D. (2016), "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", J. Vibr. Contr., 22(11), 2591-2602. https://doi.org/10.1177/1077546314550699
- Bozdogan, K.B. and Ozturk, D. (2009), "Vibration analysis of asymmetric shear wall and thin walled open section structures using transfer matrix method", Struct. Eng. Mech., 33(1), 95-107. https://doi.org/10.12989/sem.2009.33.1.095
- Chen, Y. (2018), "Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response", Smart Struct. Syst., 21(4), 469-477. https://doi.org/10.12989/SSS.2018.21.4.469
- Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34(1), 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005
- Feyzollahzadeh, M. and Mahmoodi, M. (2016), "Dynamic analysis of offshore wind turbine towers with fixed monopile platform using the transfer matrix method", J. Sol. Mech., 8(1), 130-151.
- Feyzollahzadeh, M., Mahmoodi, M., Yadavar-Nikravesh, S. and Jamali, J. (2016), "Wind load response of offshore wind turbine towers with fixed monopile platform", J. Wind Eng. Industr. Aerodyn., 158, 122-138. https://doi.org/10.1016/j.jweia.2016.09.007
- Ganesh, R. and Ganguli, R. (2013), "Stiff string approximations in Rayleigh-Ritz method for rotating beams", Appl. Math. Comput., 219(17), 9282-9295. https://doi.org/10.1016/j.amc.2013.03.017
- Gunda, J.B. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", Int. J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014
- Horner, G. and Pilkey, W. (1978) "The Riccati transfer matrix method", J. Mech. Des., 100(2), 297-302. https://doi.org/10.1115/1.3453915
- Krauss, R. and Okasha, M. (2013), "Discrete-time transfer matrix modeling of flexible robots under feedback control", Proceedings of the American Control Conference, Washington, U.S.A., June.
- Kumar, A.S. and Sankar, T. (1986), "A new transfer matrix method for response analysis of large dynamic systems", Comput. Struct., 23(4), 545-552. https://doi.org/10.1016/0045-7949(86)90097-0
- Lee, J.W. and Lee, J.Y. (2018), "A transfer matrix method for inplane bending vibrations of tapered beams with axial force and multiple edge cracks", Struct. Eng. Mech., 66(1), 125-138. https://doi.org/10.12989/SEM.2018.66.1.125
- Li, Q., Fang, J. and Jeary, A. (2000), "Free vibration analysis of cantilevered tall structures under various axial loads", Eng. Struct., 22(5), 525-534. https://doi.org/10.1016/S0141-0296(98)00124-2
- Liu, W. and Yeh, F.H. (1987), "Vibrations of non-uniform rotating beams", J. Sound Vibr., 119, 379-384. https://doi.org/10.1016/0022-460X(87)90463-9
- Panchore, V. and Ganguli, R. (2018), "Quadratic B-spline finite element method for a rotating nonuniform Euler-Bernoulli beam", Int. J. Comput. Meth. Eng. Sci. Mech., 19(5), 340-350. https://doi.org/10.1080/15502287.2018.1520757
- Panchore, V., Ganguli, R. and Omkar, S.N. (2018), "Meshfree Galerkin method for a rotating Euler-Bernoulli beam", Int. J. Comput. Meth. Eng. Sci. Mech., 19(1), 11-21. https://doi.org/10.1080/15502287.2017.1378772
- Pestel, E. and Leckie, F.A. (1963), Matrix Methods in Elastomechanics, McGraw-Hill.
- Rao, S.S. and Gupta, R. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vibr., 242(1), 103-124. https://doi.org/10.1006/jsvi.2000.3362
- Uhrig, R. (1966), "The transfer matrix method seen as one method of structural analysis among others", J. Sound Vibr., 4(2), 136-148. https://doi.org/10.1016/0022-460X(66)90117-9
- Wang, G. and Wereley, N.M. (2004), "Free vibration analysis of rotating blades with uniform tapers", AIAA J., 42(12), 2429-2437. https://doi.org/10.2514/1.4302
- Yoo, H.H., Cho, J.E. and Chung, J. (2006), "Modal analysis and shape optimization of rotating cantilever beams", J. Sound Vibr., 290(1-2), 223-241. https://doi.org/10.1016/j.jsv.2005.03.014
- Yu, A. and Hao, Y. (2012), "Improved Riccati transfer matrix method for free vibration of non-cylindrical helical springs including warping", Shock Vibr., 19(6), 1167-1180. https://doi.org/10.1155/2012/713874
Cited by
- Riccati transfer matrix method for linear multibody systems with closed loops vol.10, pp.11, 2019, https://doi.org/10.1063/5.0029057