DOI QR코드

DOI QR Code

Study of the effect of varying shapes of holes in energy absorption characteristics on aluminium circular windowed tubes under quasi-static loading

  • Baaskaran, N (Department of Mechanical Engineering, Kongu Engineering College) ;
  • Ponappa, K (Department of Mechanical Engineering, Kongu Engineering College) ;
  • Shankar, S (Department of Mechanical Engineering, Kongu Engineering College)
  • Received : 2018.08.07
  • Accepted : 2019.02.20
  • Published : 2019.04.25

Abstract

In this paper, energy absorption characteristics of circular windowed tubes with different section shapes (circular, ellipse, square, hexagon, polygon and pentagon) are investigated numerically and experimentally. The tube possesses the same material, thickness, height, volume and average cross sectional area which are subjected under axial and oblique quasi-static loading conditions. Numerical model was constructed with FE code ABAQUS/Explicit, the obtained outcome of simulation is in good matching with the experimental data. The energy absorbed, specific energy absorption, crash force efficiency, peak and mean loads along with the collapse modes with their initiation point of simple and windowed tubes were evaluated. The technique for order of preference by similarity ideal solution (TOPSIS) approach was employed for assessing their overall crushing performances. The obtained results confirm that efficacy of crash force indicators have improved by introducing windows and tubes with pentagonal and circular windows achieves the maximum ranking about 0.528 and 0.517, it clearly reveals the above are best window shapes.

Keywords

References

  1. ABAQUS, V (2011), 6.10. 3 Documentation, Dassault Systems.
  2. Abdul-Latif, A., Ahmed-Ali, A., Baleh, R. and Ouali, M.O. (2017), "Innovative solution for strength enhancement of metallic like-composite tubular structures axially crushed used as energy dissipating devices", Thin-Wall. Struct., 119, 332-344. https://doi.org/10.1016/j.tws.2017.06.024
  3. Altenhof, W., Powell, C., Harte, A.M. and Gaspar, R. (2005), "An experimental investigation into the energy absorption and force/displacement characteristics of aluminum foam filled braided stainless steel tubes under quasistatic tensile loading conditions", Int. J. Crashworth., 10(1), 21-31. https://doi.org/10.1533/ijcr.2005.0322
  4. Altin, M., Acar, E. and Guler, M. (2018), "Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns", Thin-Wall. Struct., 131, 309-323. https://doi.org/10.1016/j.tws.2018.06.043
  5. An, X., Gao, Y., Fang, J., Sun, G. and Li, Q. (2015), "Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets", Thin-Wall. Struct., 91, 63-71. https://doi.org/10.1016/j.tws.2015.01.011
  6. Arnold, B. and Altenhof, W. (2004), "Experimental observations on the crush characteristics of AA6061 T4 and T6 structural square tubes with and without circular discontinuities", Int. J. Crashworthv, 9(1), 73-87. https://doi.org/10.1533/ijcr.2004.0273
  7. Auersvaldt, R.R. and Alves, M. (2014), "Impact behavior of windowed polygonal tubes", Proceedings of the Iternational Conference on Advances in Civil, Strucutural and Mechanical Engineering.
  8. Baaskaran, N., Ponappa, K. and Shankar, S. (2017), "Quasi-static crushing and energy absorption characteristics of thin-walled cylinders with geometric discontinuities of various aspect ratios", Lat. Am. J. Sol. Struct., 14(9), 1767-1787. https://doi.org/10.1590/1679-78253866
  9. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/SCS.2018.28.2.179
  10. Borvik, T., Hopperstad, O., Reyes, A., Langseth, M., Solomos, G. and Dyngeland, T. (2003), "Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasistatic loading", Int. J. Crashworth., 8(5), 481-494. https://doi.org/10.1533/ijcr.2003.0254
  11. Chen, W. and Wierzbicki, T. (2001), "Relative merits of singlecell, multi-cell and foam-filled thin-walled structures in energy absorption", Thin-Wall. Struct., 39(4), 287-306. https://doi.org/10.1016/S0263-8231(01)00006-4
  12. Cheng, Q., Altenhof, W. and Li, L. (2006), "Experimental investigations on the crush behaviour of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities", Thin-Wall. Struct., 44(4), 441-454. https://doi.org/10.1016/j.tws.2006.03.017
  13. Dehghan-Manshadi, B., Mahmudi, H., Abedian, A. and Mahmudi, R. (2007), "A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method", Mater. Des., 28(1), 8-15. https://doi.org/10.1016/j.matdes.2005.06.023
  14. DeRuntz, J.A. and Hodge, P. (1963), "Crushing of a tube between rigid plates", J. Appl. Mech., 30(3), 391-395. https://doi.org/10.1115/1.3636567
  15. Eboreime, O., Ali, M., Kraft, F. and Alam, K. (2018), "Development of aluminum alloy 6063 T6 and T7 material models and their effects on energy-absorbing characteristics of cross-axial members", J. Strain Analy. Eng. Des., 53(4), 266-281. https://doi.org/10.1177/0309324718759412
  16. Estrada, Q., Szwedowicz, D., Baltazar, M., Cortes, C., Majewski, T. and Estrada, C.A. (2016), "The performance of energy absorption in structural profiles with different discontinuities", Int. J. Adv. Manufact. Technol., 84(5-8), 1081-1094.
  17. Estrada, Q., Szwedowicz, D., Majewski, T., Oliver, M., Cortes, C. and Castro, F. (2017), "Effect of discontinuity size on the energy absorption of structural steel beam profiles", Mech. Adv. Mater. Struc., 24(1), 88-94. https://doi.org/10.1080/15376494.2015.1117167
  18. Estrada, Q., Szwedowicz, D., Silva-Aceves, J., Majewski, T., Vergara-Vazquez, J. and Rodriguez-Mendez, A. (2017), "Crashworthiness behavior of aluminum profiles with holes considering damage criteria and damage evolution", Int. J. Mech. Sci., 131, 776-791. https://doi.org/10.1016/j.ijmecsci.2017.07.042
  19. Fan, Z., Lu, G. and Liu, K. (2013), "Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes", Eng. Struct., 55, 80-89. https://doi.org/10.1016/j.engstruct.2011.09.020
  20. Ferdynus, M. (2013), "An energy absorber in the form of a thinwalled column with square cross-section and dimples", Eksploatacja i Niezawodnosc, 15(3), 253-258.
  21. Ferdynus, M, Kotelko, M. and Kral, J. (2018), "Energy absorption capability numerical analysis of thin-walled prismatic tubes with corner dents under axial impact numeryczna analiza energochlonnosci cienkosciennych slupow pryzmatycznych z przetloczeniami", Eksploatacja i Niezawodnosc, 20(2), 252. https://doi.org/10.17531/ein.2018.2.10
  22. Gautam, S.S. and Dixit, P. (2012), "Numerical simulation of ductile fracture in cylindrical tube impacted against a rigid surface", Int. J. Dam. Mech., 21(3), 341-371. https://doi.org/10.1177/1056789511398883
  23. Ghamarian, A., Zarei, H., Farsi, M. and Ariaeifar, N. (2013), "Experimental and numerical crashworthiness investigation of the empty and foam-filled conical tube with shallow spherical caps", Strain, 49(3), 199-211. https://doi.org/10.1111/str.12028
  24. Guler, M.A., Cerit, M.E., Bayram, B., Gerceker, B. and Karakaya, E. (2010), "The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading", Int. J. Crashworth., 15(4), 377-390. https://doi.org/10.1080/13588260903488750
  25. Huang, X., Lu, G. and Yu, T.X. (2002), "On the axial splitting and curling of circular metal tubes", Int. J. Mech. Sci., 44(11), 2369-2391. https://doi.org/10.1016/S0020-7403(02)00191-1
  26. Hwang, C.L., Lai, Y.J. and Liu, T.Y. (1993), "A new approach for multiple objective decision making", Comput. Operat. Res., 20(8), 889-899. https://doi.org/10.1016/0305-0548(93)90109-V
  27. Johnson, W. (1978), "Metallic energy dissipating systems", Appl. Mech. Rev., 31, 277-288.
  28. Khalkhali, A., Mostafapour, M., Tabatabaie, S.M. and Ansari, B. (2016), "Multi-objective crashworthiness optimization of perforated square tubes using modified NSGAII and MOPSO", Struct. Multidiscipl. Optim., 54(1), 45-61. https://doi.org/10.1007/s00158-015-1385-y
  29. Kim, H.S. (2002), "New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency", Thin-Walled Struct., 40(4), 311-327. https://doi.org/10.1016/S0263-8231(01)00069-6
  30. Langseth, M. and Hopperstad, O. (1997), "Local buckling of square thin-walled aluminum extrusions", Thin-Wall. Struct., 27(1), 117-126. https://doi.org/10.1016/0263-8231(96)00007-9
  31. Lee, D.W., Ma, Z.D. and Kikuchi, N. (2011), "FOA (first-orderanalysis) model of an expandable lattice structure for vehicle crash energy absorption of an inflatable morphing body", Struct. Eng. Mech., 37(6), 617-632. https://doi.org/10.12989/sem.2011.37.6.617
  32. Lesuer, D. (1999), Experimental Investigation of Material Models for Ti-6Al-4V and 2024-T3, University of California, Lawrence Livermore National Laboratory, Livermore, California, U.S.A.
  33. Mamalis, A., Manolakos, D., Ioannidis, M. and Papapostolou, D. (2004), "Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental", Compos. Struct., 63(3-4), 347-360. https://doi.org/10.1016/S0263-8223(03)00183-1
  34. Marzbanrad, J., Abdollahpoor, A. and Mashadi, B. (2009), "Effects of the triggering of circular aluminum tubes on crashworthiness", Int. J. Crashworth., 14(6), 591-599. https://doi.org/10.1080/13588260902896458
  35. Morris, A. (1971), "Experimental investigation into the effects of indenting a cylindrical shell by a load applied through a rigid boss", J. Mech. Eng. Sci., 13(1), 36-46. https://doi.org/10.1243/JMES_JOUR_1971_013_006_02
  36. Nikkhah, H., Guo, F., Chew, Y., Bai, J., Song, J. and Wang, P. (2017), "The effect of different shapes of holes on the crushing characteristics of aluminum square windowed tubes under dynamic axial loading", Thin-Wall. Struct., 119, 412-420. https://doi.org/10.1016/j.tws.2017.06.036
  37. Palanivelu, S., Van Paepegem, W., Degrieck, J., De Pauw, S., Vantomme, J., Wastiels, J., Kakogiannis, D. and Van Hemelrijck, D. (2011), "Low velocity axial impact crushing performance of empty recyclable metal beverage cans", Int. J. Imp. Eng., 38(7), 622-636. https://doi.org/10.1016/j.ijimpeng.2011.02.008
  38. Pellettiere, J.A., Crocco, J. and Jackson, K.E. (2011), "Rotorcraft full spectrum crashworthiness and occupant injury requirements", Proceedings of the 67th American Helicopter Society, Forum, Virginia, U.S.A., May.
  39. Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G. and Li, Q. (2015), "Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases", Fin. Elem. Analy. Des., 104, 89-101. https://doi.org/10.1016/j.finel.2015.06.004
  40. Song, J., Chen, Y. and Lu, G. (2012), "Axial crushing of thinwalled structures with origami patterns", Thin-Wall. Struct., 54, 65-71. https://doi.org/10.1016/j.tws.2012.02.007
  41. Song, J., Chen, Y. and Lu, G. (2013), "Light-weight thin-walled structures with patterned windows under axial crushing", Int. J. Mech. Sci., 66, 239-248. https://doi.org/10.1016/j.ijmecsci.2012.11.014
  42. Tarlochan, F., Samer, F., Hamouda, A., Ramesh, S. and Khalid, K. (2013), "Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces", Thin-Wall. Struct., 71, 7-17. https://doi.org/10.1016/j.tws.2013.04.003
  43. Tastan, A., Acar, E., Guler, M. and Kilinckaya, U. (2016), "Optimum crashworthiness design of tapered thin-walled tubes with lateral circular cutouts", Thin-Wall. Struct., 107, 543-553. https://doi.org/10.1016/j.tws.2016.07.018
  44. Toda, S. (1983), "Buckling of cylinders with cutouts under axial compression", Exper. Mech., 23(4), 414-417. https://doi.org/10.1007/BF02330057
  45. Wang, P., Zheng, Q., Fan, H., Sun, F., Jin, F. and Qu, Z. (2015), "Quasi-static crushing behaviors and plastic analysis of thinwalled triangular tubes", J. Constr. Steel Res., 106, 35-43. https://doi.org/10.1016/j.jcsr.2014.12.004
  46. Wu, X., Zhang, Q., Gu, B. and Sun, B. (2017), "Influence of temperature and strain rate on the longitudinal compressive crashworthiness of 3D braided composite tubes and finite element analysis", Int. J. Dam. Mech., 26(7), 1003-1027. https://doi.org/10.1177/1056789516648369
  47. Zhang, X., Cheng, G. and Zhang, H. (2006), "Theoretical prediction and numerical simulation of multi-cell square thinwalled structures", Thin-Wall. Struct., 44(11), 1185-1191. https://doi.org/10.1016/j.tws.2006.09.002