Acknowledgement
Supported by : Ministry of Education, National Research Foundation of Korea (NRF)
References
- Al Qabany, A.A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022
- ASTM D 4219, (2008), Standard Test Method for Unconfined Compressive Strength Index of Chemical-Grouted Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bang, S.S., Bang, S., Frutiger, S., Nehl, L.M. and Comes, B.L. (2009), "Application of novel biological technique in dust suppression", Proceedings of the Transportation Research Board 88th Annual Meeting, Washington, D.C., U.S.A., January.
- Burbank, M, Weaver, T., Green, T., Williams, B. and Crawford, R. (2011), "Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils", Geomicrobiol. J., 28(4), 301-312. https://doi.org/10.1080/01490451.2010.499929
- Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
- Chang, I., Jeon, M. and Cho, G.C. (2015), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polym. Sci., 1-9.
- Cheng, L. Cord-Ruwisch, R. and Shahin, M.A. (2013), "Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation", Can. Geotech. J., 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023
- Cheng, L., Shahin, M.A. and Mujah, D. (2016), "Influence of key environmental conditions on microbially induced cementation for soil stabilization", J. Geotech. Geoenviron. Eng., 143(1), 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586
- Choi, S.G., Chu, J., Brown, R.C., Wang, K. and Wen, Z. (2017c), "Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass", ACS Sust. Chem. Eng., 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521
- Choi, S.G., Park, S.S., Wu, S. and Chu, J. (2017b), "Methods for calcium carbonate content measurement of biocemented soils", J. Mater. Civ. Eng., 29(11), 06017015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064
- Choi, S.G., Wang, K. and Chu, J. (2016b), "Properties of biocemented, fiber reinforced sand", Construct. Build. Mater., 120, 623-629. https://doi.org/10.1016/j.conbuildmat.2016.05.124
- Choi, S.G., Wang, K., Wen, Z. and Chu. J. (2017a), "Mortar crack repair using microbial induced calcite precipitation method", Cement Concrete Compos., 83, 209-221. https://doi.org/10.1016/j.cemconcomp.2017.07.013
- Choi, S.G., Wu, S. and Chu, J. (2016a), "Biocementation for sand using eggshell as calcium source", J. Geotech. Geoenviron. Eng., 142(10), 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534
- Chu, J., Stabnikov, V., and Ivanov, V. (2012), "Microbially induced calcium carbonate precipitation on surface or in the bulk of soil", Geomicrobiol. J., 29(6), 544-549, https://doi.org/10.1080/01490451.2011.592929
- Dakhane, A., Das, S., Hansen, H. and O'Donnel, S. (2018), "Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: Quantification based on fracture response", J. Mater. Civ. Eng., 30(4), 04018035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002218
- de Leeuw, N.H. and Parker, S.C. (1998), "Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach", J. Phys. Chem., 102(16), 2914-2922. https://doi.org/10.1021/jp973210f
- De Muynck, W., Debrouwer, D., De Belie, N. and Verstraete, W. (2008), "Bacterial carbonate precipitation improves the durability of cementitious materials", Cement Concrete Res., 38(7), 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
- DeJong, J.T., Fritzges, M.B. and Nuslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
- DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
- DeJong, J.T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L.A., Al Qabany, A., Aydilek, A., Bang, S.S., Burbank, M., Caslake Laurie, F., Chen, C.Y., Cheng X., Chu, J., Ciruli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D.A.C., Martinez, B., Montoya, B.M., Nelson, D.C., Palomino, A., Renforth, P., Santamarina, J.C., Seagren, E.A., Tanyu, B., Tsesarsky, M. and Weaver, T. (2013), "Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges", Geotechnique, 63(4), 287-301. https://doi.org/10.1680/geot.SIP13.P.017
- Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417
- Dhami, N.K., Reddy, M.S. and Mukherjee, A. (2013), "Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites", J. Microbiol. Biotechnol., 23(5), 707-714. https://doi.org/10.4014/jmb.1212.11087
- Dilrukshi, R.A.N., Watanabe, J. and Kawasaki, S. (2016), "Strengthening of sand cemented with calcium phosphate compounds using plant-derived urease", Int. J. GEOMATE, 11(25), 2461-2467.
- Feng, K. and Montoya, B. (2016), "Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading", J. Geotech. Geoenviron. Eng., 142(1), 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379
- Ghosh, P., Mandal, S., Chattopadhyay, B.D. and Pal, S. (2005), "Use of microorganisms to improve the strength of cement mortar", Cement Concrete Res., 35(10), 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
- Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900
- Hamdan, N. and Kavazanjian, Jr, E. (2016), "Enzyme-induced carbonate mineral precipitation for fugitive dust control", Geotechnique, 66(7), 546-555. https://doi.org/10.1680/jgeot.15.P.168
- Im, J., Tran, A.T.P., Chang, I. and Cho, G.C. (2017), "Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (RC) tests", Geomech. Eng., 12(5), 815-830. https://doi.org/10.12989/gae.2017.12.5.815
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831
- Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A. and Amini, F. (2016), "Influence of fiber addition on mechanical properties of MICP-treated sand", J. Mater. Civ. Eng., 28(4), 04015166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442
- Mitchell, J.K. and Santamarina, J.C. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
- Noh, D.H., Ajo-Franklin, J.B., Kwon, T.H. and Muhunthan, B. (2016), "P and S wave responses of bacterial biopolymer formation in unconsolidated porous media", J. Geophys. Res. Biogeosci., 121(4), 1158-1177.
- Park, S.S., Choi, S.G. and Nam, I.H. (2014), "Effect of plantinduced calcite precipitation on the strength of sand", J. Mater. Civ. Eng., 26(8), 06014017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029
- Pei, R., Liu, J., Wang, S. and Yang, M. (2013), "Use of bacterial cell walls to improve the mechanical performance of concrete", Cement Concrete Compos., 39, 122-130. https://doi.org/10.1016/j.cemconcomp.2013.03.024
- Qureshi, M., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785
-
Rodriguez-Blanco, J.D., Sand, K.K. and Benning, L.G. (2017), ACC and Vaterite as Intermediates in the Solution-Based Crystallization of
$CaCO_{3}$ , in New Perspectives on Mineral Nucleation and Growth, Springer, Cham, Switzerland. - Rodriguez-Navarro, C., Jroundi, F., Schiro, M., Ruiz-Agudo, E. and Gonzalez-Munoz, M.T. (2012), "Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications in stone conservation", Appl. Environ. Microbiol., 78(11), 4017-4029. https://doi.org/10.1128/AEM.07044-11
- Safavizadeh, S. Montoya, B.M. and Gabr, M.A. (2017), Effect of Microbial Induced Calcium Carbonate Precipitation on the Performance of Ponded Coal Ash, Association of State Dam Safety Officials, 1-10.
- Sevcik, R., Perez-Estebanez, M., Viani, A., Sasek, P. and Macova, P. (2015), "Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives", Powder Technol., 284, 265-271. https://doi.org/10.1016/j.powtec.2015.06.064
- Sharma, A. and Ramkrishnan, R. (2016), "Study on effect of microbial induced calcite precipitates on strength of fine grained soils", Perspect. Sci., 8, 198-202. https://doi.org/10.1016/j.pisc.2016.03.017
- Soon, N.W., Lee, L.M., Khun T.C. and Ling, H.S. (2014), "Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation", J. Geotech. Geoenviron. Eng., 140(5), 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089
- van Paassen, L.A., Ghose, R., van der Linden, T.J.M., van der Star, W.R.L. and van Loosdrecht, M.C.M. (2010), "Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
- Verba, C., Thurber, A.R., Alleau, Y., Koley, D., Colwell, F. and Torres, M.E. (2016), "Mineral changes in cement-sandstone matrices induced by biocementation", Int. J. Greenhouse Gas Control, 49, 312-322. https://doi.org/10.1016/j.ijggc.2016.03.019
- Whiffin, V.S., van Paassen, V.S. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505
- Worrell, E., Price, L., Martine, N., Hendriks, C. and Meida, L.O. (2011), "Carbon dioxide emissions from the global cement industry", Ann. Rev. Energy Environ., 26(1), 303-329.
- Yasodian, S.E., Dutta, R.K., Mathew, L., Anima, T.M. and Seena, S.B. (2012), "Effect of microorganism on engineering properties of cohesive soils", Geomech. Eng., 4(2), 1-16. https://doi.org/10.12989/gae.2012.4.1.001
- Zhang, Y., Guo, H.X. and Cheng, X.H. (2014), "Influences of calcium sources on microbially induced carbonate precipitation in porous media", Mater. Res. Innov., 18(2), 79-84.
- Zhao, Q., Li, L., Li, C., Li, M., Amini, F. and Zhang, H. (2014), "Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease", J. Mater. Civ. Eng., 26(12), 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013
Cited by
- Experimental Study of EICP Combined with Organic Materials for Silt Improvement in the Yellow River Flood Area vol.10, pp.21, 2019, https://doi.org/10.3390/app10217678
- Study on the mechanical properties and rheological model of an anchored rock mass under creep-fatigue loading vol.23, pp.6, 2020, https://doi.org/10.12989/gae.2020.23.6.535
- Enzyme induced carbonate precipitation for soil internal erosion control under water seepage vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.289
- Seismic earth pressure on embankment gravity retaining wall with nonuniform slope vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.415