과제정보
연구 과제 주관 기관 : Ministry of Land, Infrastructure, and Transport (MOLIT), National Research Foundation of Korea (NRF)
참고문헌
- Amezketa, E., Singer, M.J. and Le Bissonnais, Y. (1996), "Testing a new procedure for measuring water-stable aggregation", Soil Sci. Soc. Amer. J., 60(3), 888-894. https://doi.org/10.2136/sssaj1996.03615995006000030030x
- Angers, D.A. (1990), "Compression of agricultural soils from Quebec", Soil Till. Res., 18(4), 357-365. https://doi.org/10.1016/0167-1987(90)90120-3
- ASTM (2007), D4648-05: Standard Test Method for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil, ASTM, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2010), D2216-10: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2011), D2435: Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2014), D854-14: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2017), D2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2017), D4318-17: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2017), D7928-17: Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. https://doi.org/10.1007/s12517-015-2098-7
- Barrere, G.C., Barber, C.E. and Daniels, M.J. (1986), "Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. Campestris", Int. J. Biol. Macromolecul., 8(6), 372-374. https://doi.org/10.1016/0141-8130(86)90058-9
- Bate, B., Choo, H. and Burns, S.E. (2013), "Dynamic properties of fine-grained soils engineered with a controlled organic phase", Soil Dyn. Earthq. Eng., 53, 176-186. https://doi.org/10.1016/j.soildyn.2013.07.005
- Bergado, D., Sasanakul, I. and Horpibulsuk, S. (2003), "Electroosmotic consolidation of soft Bangkok clay using copper and carbon electrodes with PVD", Geotech. Test. J., 26(3), 277-288.
- Bo, M.W., Arulrajah, A., Horpibulsuk, S. and Leong, M. (2015), "Quality management of prefabricated vertical drain materials in mega land reclamation projects: A case study", Soil. Found., 55(4), 895-905. https://doi.org/10.1016/j.sandf.2015.06.019
- Bolto, B. and Gregory, J. (2007), "Organic polyelectrolytes in water treatment", Water Res., 41(11), 2301-2324. https://doi.org/10.1016/j.watres.2007.03.012
- Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137
- Brunori, F., Penzo, M.C. and Torri, D. (1989), "Soil shear strength: Its measurement and soil detachability", Catena, 16(1), 59-71. https://doi.org/10.1016/0341-8162(89)90004-0
- BSI, B. (1990), Methods of Test for Soils for Civil Engineering Purposes, British Standards Institution, Milton Keynes, U.K.
- Cabalar, A.F., Awraheem, M.H. and Khalaf, M.M. (2018), "Geotechnical properties of a low-plasticity clay with biopolymer", J. Mater. Civ. Eng., 30(8), 04018170. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380
- Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1
- Cha, M., Santamarina, J.C., Kim, H.S. and Cho, G.C. (2014), "Small-strain stiffness, shear-wave velocity, and soil compressibility", J. Geotech. Geoenviron. Eng., 140(10), 06014011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157
- Chai, J., Horpibulsuk, S., Shen, S. and Carter, J.P. (2014), "Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains", Geotext. Geomembranes, 42(5), 437-444. https://doi.org/10.1016/j.geotexmem.2014.07.001
- Chang, I. and Cho, G.C. (2010), "A new alternative for estimation of geotechnical engineering parameters in reclaimed clays by using shear wave velocity", Geotech. Test. J., 33(3), 171-182.
-
Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with
${\beta}$ -1,3/1,6-glucan biopolymer", Construct. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030 - Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
- Chang, I. and Cho, G.C. (2018), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 1-15.
- Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentallyfriendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Construct. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2018), "Soil consistency and inter-particle characteristics of xanthan gum biopolymer containing soils with pore-fluid variation", Can. Geotech. J.
- Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Construct. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
-
Chang, S.S., Lu, W.Y.W., Park, S.H. and Kang, D.H. (2010), "Control of foodborne pathogens on ready-to-eat roast beef slurry by
$\varepsilon$ -polylysine", Int. J. Food Microbiol., 141(3), 236-241. https://doi.org/10.1016/j.ijfoodmicro.2010.05.021 - Darwin, R.F. and Tol, R.S.J. (2001), "Estimates of the economic effects of sea level rise", Environ. Resour. Econ., 19(2), 113-129. https://doi.org/10.1023/A:1011136417375
- Doerr, W. (1952), "Pneumoconiosis caused by cement dust", Virchows Archiv fur pathologische Anatomie und Physiologie und fur klinische Medizin, 322(4), 397-427. https://doi.org/10.1007/BF00957587
- Dolinar, B. and Trauner, L. (2007), "The impact of structure on the undrained shear strength of cohesive soils", Eng. Geol., 92(1-2), 88-96. https://doi.org/10.1016/j.enggeo.2007.04.003
- Dollimore, D. and Horridge, T.A. (1973), "The dependence of the flocculation behavior of china clay-polyacrylamide suspensions on the suspension pH", J. Colloid Interface Sci., 42(3), 581-588. https://doi.org/10.1016/0021-9797(73)90044-1
- Du, Y.J., Wei, M.L., Jin, F. and Liu, Z.B. (2013), "Stress-strain relation and strength characteristics of cement treated zinccontaminated clay", Eng. Geol., 167, 20-26. https://doi.org/10.1016/j.enggeo.2013.10.005
- Furst, E.M., Pagac, E.S. and Tilton, R.D. (1996), "Coadsorption of polylysine and the cationic surfactant cetyltrimethylammonium bromide on silica", Industr. Eng. Chem. Res., 35(5), 1566-1574. https://doi.org/10.1021/ie9506577
- Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
- Garcia, M.C., Alfaro, M.C., Calero, N. and Munoz, J. (2011), "Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels", Biochem. Eng. J., 55(2), 73-81. https://doi.org/10.1016/j.bej.2011.02.017
-
Geornaras, I., Yoon, Y., Belk, K.E., Smith, G.C. and Sofos, J.N. (2007), "Antimicrobial activity of
$\varepsilon$ -Polylysine against escherichia coli O157:H7, salmonella typhimurium, and listeria monocytogenes in various food extracts", J. Food Sci., 72(8), M330-M334. https://doi.org/10.1111/j.1750-3841.2007.00510.x - Greenwood, M.S. and Bamberger, J.A. (2002), "Measurement of viscosity and shear wave velocity of a liquid or slurry for online process control", Ultrasonics, 39(9), 623-630. https://doi.org/10.1016/S0041-624X(02)00372-4
- Hansbo, S. (1957), A New Approach to the Determination of the Shear Strength of Clay by the Fall-Cone Test, Royal Swedish Geotechnical Institute.
- He, J., Chu, J., Tan, S.K., Vu, T.T. and Lam, K.P. (2017), "Sedimentation behavior of flocculant-treated soil slurry", Mar. Georesour. Geotechnol., 35(5), 593-602. https://doi.org/10.1080/1064119X.2016.1177625
-
Hiraki, J., Ichikawa, T., Ninomiya, S.I., Seki, H., Uohama, K., Seki, H., Kimura, S., Yanagimoto, Y. and Barnett, J.W. (2003), "Use of ADME studies to confirm the safety of
$\varepsilon$ -polylysine as a preservative in food", Regul. Toxicol. Pharm., 37(2), 328-340. https://doi.org/10.1016/S0273-2300(03)00029-1 - Horpibulsuk, S., Chinkulkijniwat, A., Cholphatsorn, A., Suebsuk, J. and Liu, M.D. (2012), "Consolidation behavior of soil-cement column improved ground", Comput. Geotech., 43, 37-50. https://doi.org/10.1016/j.compgeo.2012.02.003
- Horpibulsuk, S., Miura, N. and Bergado, D.T. (2004), "Undrained shear behavior of cement admixed clay at high water content", J. Geotech. Geoenviron. Eng., 130(10), 1096-1105. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1096)
- Ibanez, M., Chassagne, C., van Paassen, L. and Sittoni, L. (2015), Optimizing Dewatering and Soft Tailings Consolidation by Enhancing Tailings' Composition, in Tailings and Mine Waste, Vancounver, Canada.
- Im, J., Tran, A.T.P., Chang, I. and Cho, G.C. (2017), "Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (RC) tests", Geomech. Eng., 12(5), 815-830. https://doi.org/10.12989/gae.2017.12.5.815
- Imai, G. (1980), "Settling behavior of clay suspension", Soil. Found., 20(2), 61-77. https://doi.org/10.3208/sandf1972.20.2_61
- Kennedy, J.F. (1984), "Production, properties and applications of xanthan", Prog. Ind. Microbiol., 19, 319-371.
- Kolaian, J.H. and Low, P.F. (2013), "Thermodynamic properties of water in suspensions of montmorillonite", Clay. Clay Miner., 9(1), 71-84. https://doi.org/10.1346/CCMN.1960.0090105
- Koumoto, T. and Houlsby, G.T. (2001), "Theory and practice of the fall cone test", Geotechnique, 51(8), 701-712. https://doi.org/10.1680/geot.2001.51.8.701
- Ku, T., Subramanian, S., Moon, S.W. and Jung, J. (2017), "Stress dependency of shear-wave velocity measurements in soils", J. Geotech. Geoenviron. Eng., 143(2), 04016092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001592
-
Kwon, Y.M., Im, J., Chang, I. and Cho, G.C. (2017), "
$\varepsilon$ -polylysine biopolymer for coagulation of clay suspensions", Geomech. Eng., 12(5), 753-770. https://doi.org/10.12989/gae.2017.12.5.753 - Lado, M., Ben-Hur, M. and Shainberg, I. (2004), "Soil wetting and texture effects on aggregate stability, seal formation, and erosion", Soil Sci. Soc. Amer. J., 68(6), 1992-1999. https://doi.org/10.2136/sssaj2004.1992
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. https://doi.org/10.1007/s12665-016-5643-0
- Lee, J.S., Seo, S.Y. and Lee, C. (2015), "Geotechnical and geophysical characteristics of muskeg samples from Alberta, Canada", Eng. Geol., 195, 135-141. https://doi.org/10.1016/j.enggeo.2015.04.030
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831
- Locat, J. and Demers, D. (1988), "Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays", Can. Geotech. J., 25(4), 799-806. https://doi.org/10.1139/t88-088
- Locat, J., Berube, M.A. and Choquette, M. (1990), "Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development", Can. Geotech. J., 27(3), 294-304. https://doi.org/10.1139/t90-040
- Martin, G., Yen, T. and Karimi, S. (1996), "Application of biopolymer technology in silty soil matrices to form impervious barriers", Proceedings of the 7th Australia New Zealand Conference on Geomechanics: Geomechanics in a Changing World, Adelaide, South Australia, July.
- Mazia, D., Schatten, G. and Sale, W. (1975), "Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy", J. Cell Biol., 66(1), 198-200. https://doi.org/10.1083/jcb.66.1.198
- Michaels, A.S. and Bolger, J.C. (1962), "Settling rates and sediment volumes of flocculated kaolin suspensions", Industr. Eng. Chem. Fund., 1(1), 24-33. https://doi.org/10.1021/i160001a004
- Mujah, D., Shahin, M.A. and Cheng, L. (2017), "State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization", Geomicrobiol. J., 34(6), 524-537. https://doi.org/10.1080/01490451.2016.1225866
- Norman, L.E.J. (1958), "A comparison of values of liquid limit determined with apparatus having bases of different hardness", Geotechnique, 8(2), 79-83. https://doi.org/10.1680/geot.1958.8.2.79
- Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., (2101), 34-43.
- Palomino, A.M. and Santamarina, J.C. (2005), "Fabric map for kaolinite: Effects of pH and ionic concentration on behavior", Clay. Clay Miner., 53(3), 211-223. https://doi.org/10.1346/CCMN.2005.0530302
- Pan, J.R., Huang, C., Chen, S. and Chung, Y.C. (1999), "Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles", Colloid Surface. A Physicochem. Eng. Asp., 147(3), 359-364. https://doi.org/10.1016/S0927-7757(98)00588-3
- Park, T.G., Jeong, J.H. and Kim, S.W. (2006), "Current status of polymeric gene delivery systems", Adv. Drug Delivery Rev., 58(4), 467-486. https://doi.org/10.1016/j.addr.2006.03.007
- Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and Buchhammer, H.M. (2003), "Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes", Colloid Surface. A Physicochem. Eng. Asp., 218(1-3), 47-57. https://doi.org/10.1016/S0927-7757(02)00584-8
- Phetchuay, C., Horpibulsuk, S., Arulrajah, A., Suksiripattanapong, C. and Udomchai, A. (2016), "Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer", Appl. Clay Sci., 127, 134-142. https://doi.org/10.1016/j.clay.2016.04.005
- Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785
- Rijsberman, F. (1991), Potential Costs of Adapting to Sea Level Rise in OECD Countries, in Responding to Climate Change: Selected Economic Issues, 11-50.
- Rong, H., Qian, C. and Wang, R. (2011), "A cementation method of loose particles based on microbe-based cement", Sci. China Technol. Sci., 54(7), 1722-1729. https://doi.org/10.1007/s11431-011-4408-y
- Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves, John Wiley & Sons,
- Sharma, B. and Bora Padma, K. (2003), "Plastic limit, liquid limit and undrained shear strength of soil-reappraisal", J. Geotech. Geoenviron. Eng., 129(8), 774-777. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774)
- Skempton, A.W. and Northey, R.D. (2008), The Sensitivity of Clays, in The Essence of Geotechnical Engineering: 60 years of Geotechnique, Thomas Telford Publishing.
- Trauner, L., Dolinar, B. and Misic, M. (2005), "Relationship between the undrained shear strength, water content, and mineralogical properties of fine-grained soils", Int. J. Geomech., 5(4), 350-355. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:4(350)
- Vardanega, P.J. and Haigh, S.K. (2014), "The undrained strengthliquidity index relationship", Can. Geotech. J., 51(9), 1073-1086. https://doi.org/10.1139/cgj-2013-0169
- Voordouw, G. (2013), "Interaction of oil sands tailings particles with polymers and microbial cells: First steps toward reclamation to soil", Biopolymers, 99(4), 257-262. https://doi.org/10.1002/bip.22156
- Wang, Y.H. and Siu, W.K. (2006), "Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations", Can. Geotech. J., 43(6), 587-600. https://doi.org/10.1139/t06-026
- Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N. and Shen, D. (2017), "Review of ground improvement using microbial induced carbonate precipitation (MICP)", Mar. Georesour. Geotechnol., 35(8), 1135-1146. https://doi.org/10.1080/1064119X.2017.1297877
- Wu, H.N., Shen, S.L., Ma, L., Yin, Z.Y. and Horpibulsuk, S. (2015), "Evaluation of the strength increase of marine clay under staged embankment loading: A case study", Mar. Georesour. Geotechnol., 33(6), 532-541. https://doi.org/10.1080/1064119X.2014.954180
- Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012), "Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation", Soil. Found., 52(3), 539-549. https://doi.org/10.1016/j.sandf.2012.05.011
- Yin, J.H. and Fang, Z. (2006), "Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine clay", Geotechnique, 56(1), 63-68. https://doi.org/10.1680/geot.2006.56.1.63
- Youssef, M.S. (1965), "Relationships between shear strength, consolidation, liquid limit, and plastic limit for remoulded clays", Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, September.
피인용 문헌
- A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils vol.2020, 2019, https://doi.org/10.1155/2020/1465709
- A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties vol.11, pp.1, 2019, https://doi.org/10.3390/app11010170
- Surface erosion behavior of biopolymer-treated river sand vol.25, pp.1, 2019, https://doi.org/10.12989/gae.2021.25.1.049
- Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand vol.26, pp.2, 2019, https://doi.org/10.12989/gae.2021.26.2.101
- Enzyme induced carbonate precipitation for soil internal erosion control under water seepage vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.289
- Preliminary study on microbially modified expansive soil of embankment vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.301
- Stabilization of lateritic soil by ladle furnace slag for pavement subbase material vol.26, pp.4, 2019, https://doi.org/10.12989/gae.2021.26.4.323
- Seismic earth pressure on embankment gravity retaining wall with nonuniform slope vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.415