과제정보
연구 과제 주관 기관 : Ministry of Land, Infrastructure, and Transport (MOLIT)
참고문헌
- Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331. https://doi.org/10.1680/geot.SIP13.P.022
- ASTM (2011), D7181-11: Method for Consolidated Drained Triaxial Compression Test for Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Cabalar, A., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1
-
Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with
${\beta}$ -1,3/1,6-glucan biopolymer", Construct. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030 - Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
- Chang, I. and Cho, G.C. (2018), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 1-15.
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
- Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentallyfriendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
- Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Construct. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Construct. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chang, I., Jeon, M. and Cho, G.C. (2015), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polymer Sci.
- Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Construct. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
- Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma. 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
- Chen, R., Ramey, D., Weiland, E., Lee, I. and Zhang, L. (2016), "Experimental investigation on biopolymer strengthening of mine tailings", J. Geotech. Geoenviron. Eng., 142(12), 06016017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001568
- Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron. Eng., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902
- Chu, J., Leroueil, S. and Leong, W. (2003), "Unstable behaviour of sand and its implication for slope instability", Can. Geotech. J., 40(5), 873-885. https://doi.org/10.1139/t03-039
- Fatehi, H., Abtahi, S.M., Hashemolhosseini, H. and Hejazi, S.M. (2018), "A novel study on using protein based biopolymers in soil strengthening", Construct. Build. Mater., 167, 813-821. https://doi.org/10.1016/j.conbuildmat.2018.02.028
- Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
- Hataf, N., Ghadir, P. and Ranjbar, N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Clean. Prod., 170 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256
- Horpibulsuk, S., Miura, N. and Bergado, D.T. (2004), "Undrained shear behavior of cement admixed clay at high water content", J. Geotech. Geoenviron. Eng., 130(10), 1096-1105. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1096)
- Horpibulsuk, S., Phetchuay, C. and Chinkulkijniwat, A. (2011), "Soil stabilization by calcium carbide residue and fly ash", J. Mater. Civ. Eng., 24(2), 184-193. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000370
- Im, J., Tran, A.T.P., Chang, I. and Cho, G.C. (2017), "Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) tests", Geomech. Eng., 12(5), 815-830. https://doi.org/10.12989/gae.2017.12.5.815
- Kamon, M. and Nontananandh, S. (1991), "Combining industrial wastes with lime for soil stabilization", J. Geotech. Eng., 117(1), 1-17. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(1)
- Kaniraj, S.R. and Havanagi, V.G. (2001), "Behavior of cementstabilized fiber-reinforced fly ash-soil mixtures", J. Geotech. Geoenviron. Eng., 127(7), 574-584. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(574)
- Kavazanjian, E., Iglesias, E. and Karatas, I. (2009), Biopolymer Soil Stabilization for Wind Erosion Control, IOS Press, Alexandria, Egypt.
- Khatami, H. and O'Kelly, B. (2012), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861
- Kulshreshtha, Y., Schlangen, E., Jonkers, H., Vardon, P. and Van Paassen, L. (2017), "CoRncrete: A corn starch based building material", Construct. Build. Mater., 154, 411-423. https://doi.org/10.1016/j.conbuildmat.2017.07.184
-
Kumbhojkar, A. (1993), "Numerical evaluation of Terzaghi's N
$\gamma$ ", J. Geotech. Eng., 119(3), 598-607. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:3(598) -
Kwon, Y.M., Im, J., Chang, I. and Cho, G.C. (2017), "
$\varepsilon$ -polylysine biopolymer for coagulation of clay suspensions", Geomech. Eng., 12(5), 753-770. https://doi.org/10.12989/gae.2017.12.5.753 - Larson, S., Ballard, J., Griggs, C., Newman, J.K. and Nestler, C. (2010), "An innovative non-ptroleum Rhizobium Tropici biopolymer salt for soil stabilization", Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, Canada, November.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2016), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civ. Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831
- Lo, S., Rahman, M.M. and Bobei, D. (2010), "Limited flow characteristics of sand with fines under cyclic loading", Geomech. Geoeng., 5(1), 15-25. https://doi.org/10.1080/17486020903452709
- Mortensen, B. and DeJong, J. (2011), "Strength and stiffness of MICP treated sand subjected to various stress paths", Proceedings of the Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, Texas, U.S.A., March.
- Ngowi, A.B. (1997), "Improving the traditional earth construction: A case study of Botswana", Construct. Build. Mater., 11(1), 1-7. https://doi.org/10.1016/S0950-0618(97)00006-8
- Orts, W.J., Sojka, R.E., Glenn, G.M. and Gross, R.A. (2001), Biopolymer Additives for the Reduction of Soil Erosion Losses During Irrigation, ACS Publications.
- Prusinski, J. and Bhattacharja, S. (1999), "Effectiveness of Portland cement and lime in stabilizing clay soils", Transport. Res. Rec. J. Transport. Res. Board., 1652, 215-227. https://doi.org/10.3141/1652-28
- Rashid, A.S.A., Latifi, N., Meehan, C.L. and Manahiloh, K.N. (2017), "Sustainable improvement of tropical residual soil using an environmentally friendly additive", Geotech. Geol. Eng., 35(6), 2613-2623. https://doi.org/10.1007/s10706-017-0265-1
- Sherwood, P. (1993), Soil Stabilization with Cement and Lime.
- Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley, New York, U.S.A.
피인용 문헌
- A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils vol.2020, 2019, https://doi.org/10.1155/2020/1465709
- Triaxial test behaviour of silty sands treated with agar biopolymer vol.15, pp.4, 2019, https://doi.org/10.1080/19386362.2019.1679441
- Interfacial Shearing Behavior along Xanthan Gum Biopolymer-Treated Sand and Solid Interfaces and Its Meaning in Geotechnical Engineering Aspects vol.11, pp.1, 2019, https://doi.org/10.3390/app11010139
- Improving the Mechanical Properties of Red Clay Using Xanthan Gum Biopolymer vol.2021, 2019, https://doi.org/10.1155/2021/1535772
- Strength, Hydraulic, and Microstructural Characteristics of Expansive Soils Incorporating Marble Dust and Rice Husk Ash vol.2021, 2019, https://doi.org/10.1155/2021/9918757
- Strength and Mechanism of Carbonated Solidified Clay with Steel Slag Curing Agent vol.25, pp.3, 2021, https://doi.org/10.1007/s12205-020-0817-4
- Evaluation of Injection capabilities of a biopolymer-based grout material vol.25, pp.1, 2019, https://doi.org/10.12989/gae.2021.25.1.031
- Surface erosion behavior of biopolymer-treated river sand vol.25, pp.1, 2019, https://doi.org/10.12989/gae.2021.25.1.049
- Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand vol.26, pp.2, 2019, https://doi.org/10.12989/gae.2021.26.2.101
- Enzyme induced carbonate precipitation for soil internal erosion control under water seepage vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.289
- Experimental Study on Endurance Performance of Lime and Cement-Treated Cohesive Soil vol.25, pp.9, 2021, https://doi.org/10.1007/s12205-021-2154-7
- Seismic earth pressure on embankment gravity retaining wall with nonuniform slope vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.415
- Triaxial Shear Behavior of Basalt Fiber-Reinforced Loess Based on Digital Image Technology vol.25, pp.10, 2021, https://doi.org/10.1007/s12205-021-2034-1
- Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification vol.307, 2021, https://doi.org/10.1016/j.conbuildmat.2021.124983