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Abstract 
 

Recently, continuous dimensional emotion recognition from audiovisual clues has attracted 
increasing attention in both theory and in practice. The large amount of data involved in the 
recognition processing decreases the efficiency of most bimodal information fusion 
algorithms. A novel algorithm, namely the incomplete Cholesky decomposition based kernel 
cross factor analysis (ICDKCFA), is presented and employed for continuous dimensional 
audiovisual emotion recognition, in this paper. After the ICDKCFA feature transformation, 
two basic fusion strategies, namely feature-level fusion and decision-level fusion, are explored 
to combine the transformed visual and audio features for emotion recognition. Finally, 
extensive experiments are conducted to evaluate the ICDKCFA approach on the AVEC 2016 
Multimodal Affect Recognition Sub-Challenge dataset. The experimental results show that the 
ICDKCFA method has a higher speed than the original kernel cross factor analysis with the 
comparable performance. Moreover, the ICDKCFA method achieves a better performance 
than other common information fusion methods, such as the Canonical correlation analysis, 
kernel canonical correlation analysis and cross-modal factor analysis based fusion methods. 
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1. Introduction 

The human emotion can be expressed and inferred through various modalities such as voice, 
facial expression, body gesture, and various physiological indices [1]-[3]. It is known that 
using multiple modalities can improve emotion recognition performance [2]-[6]. However, 
how to make full use of the multimodal information to implement emotion recognition is still a 
challenging problem [2]-[6].  

In the past few decades, there have been a lot of studies on multimodal emotion recognition 
[3][15]. However, most of them have been focused on multimodal discrete emotion 
recognition [9][10]. However, the discrete categorical representation of emotion could neither 
distinguish the subtle difference of the emotion nor describe the evolvement of the emotion [1]. 
In order to overcome these shortcomings, more attention has recently been focused on 
continuous dimensional emotion recognition . Especially, since 2012, multimodal continuous 
dimensional emotion recognition has always been a major task in the Audio-Visual Emotion 
recognition Challenge (AVEC) [11]-[15].This has greatly boosted the development of 
multimodal continuous dimensional recognition in various aspect such as feature extraction, 
feature fusion and recognition method. What was of interest to us  was the feature fusion. In 
general, the fusion methods used in multimodal continuous dimensional emotion recognition 
can be divided into feature level, decision level, model level fusion, and mixed approaches 
[1][7]. 

For feature level fusion, the information from multiple modalities is combined to generate 
the recognition feature [1][7]. The simplest method is to construct a joint feature as the input of 
a regression model by concatenating the features from all modalities [1][7][11][16]-[19]. 
Additionally, many other feature-level fusion strategies have been proposed. Eyben et al. [16] 
proposed a string-based audiovisual fusion method based on the simple feature level fusion 
idea to fuse audiovisual behavior events such as head gestures, facial action unit, laughter and 
sighs. Soladié et al. [17] proposed a radial basis function (RBF) system, in which the fusion of 
the input relevant features was implemented via the k-mean clustering algorithm to generate a 
set of representative samples.  

For decision level fusion, the predictions from various models based on each single 
modality are combined by various strategies to obtain the final prediction [1][7]. By far, there 
have been many strategies to combine the predictions. The traditional methods include 
weighted summing[20][21], averaging[13][22] and median calculating[22]. Linear regression 
is also a common method that has been used in [15][16][22][23]. These methods can also be 
improved, e.g. Nicolle et al. [24] expanded the linear regression to the local linear regressions.  

For model level fusion, a designed model itself could not only combine the multimodal 
information and the other information of the emotion, but also obtain the emotion recognition 
results [1][7]. Soladié et al. [25] introduced a fuzzy inference system to fuse multimodal 
features and recognize dimensional emotion. Metallinou et al. [26] proposed a Gaussian 
Mixture Model (GMM) to fuse the visual and audio features as well as track the emotion. 

Except for the three types of fusion above-mentioned, some hybrid approaches have also 
been proposed. Sayedelahl et al. [20] presented a combined bi-modal feature-decision fusion 
approach to improve the performance of emotion recognition. Tian et al. [27] proposed a 
hierarchical fusion strategy to combine features from different modalities at different layers of 
a hierarchical structure. 
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Feature-level and decision-level fusion are the most popular fusion strategies due to their 
simplicity in theory and flexibility in application. Since the emotion information is imbedded 
in the audio and visual modal with a complementary redundant manner, identifying the 
relationship between the two modalities before implementing feature-level or decision-level 
fusion is expected to effectively improve emotion recognition performance [1][4][5]. 
Canonical correlation analysis (CCA) [28] is a popular method to analyze the relationship 
between two modalities. The CCA, especially its kernel version, i.e. kernel canonical 
correlation analysis (KCCA) [28], has often been used in multimodal recognition. For 
example, Song et al. [29] used KCCA to compute the visual and audio transformed features 
before implementing feature-level fusion. However, the implementation of CCA involves the 
calculation of the inverse of the covariance matrices from two modalities. When at least one of 
two matrices is non-invertible or even just close to non-invertible, the method will result in 
large errors [5][6]. In order to break through the restriction, Li et al. [6] proposed cross-modal 
factor analysis (CFA), that could effectively analyze the linear relationship between two 
modalities and avoid the calculation of the inverse matrix. To analyze the non-linear 
relationship between two modalities, Wang et al. [4][5] expanded the CFA to the kernel 
cross-modal factor analysis (KCFA) using the kernel trick.  

By KCFA transforming, we could obtain transformed visual and audio features. Thus, it 
could be followed by various feature-level and decision-level fusion strategies. It has been 
successfully used in discrete emotion recognition [4][5]. However, the effectiveness of the 
KCFA used for continuous dimensional emotion recognition has yet to be investigated, which 
is what we wanted to do. The implementation of the KCFA involves eigenvalue 
decomposition of two square matrices, where their dimensions are the number of samples n .  
The computational complexity of each of the implementation is 3( )O n . If n is large, which is 
the status encountered in the continuous dimensional emotion recognition, then the 
computation speed will be very slow. 

Motivated by the fact that given a precisionη , the kernel matrix can be approximated by a 
low-rank matrix with rank M n , we used the incomplete Cholesky decomposition to 
acquire the low-rank approximation matrices of the kernel matrices involved in the KCFA, 
and further reduced the computational complexity of the KCFA. In this paper, we provided a 
theorem and its corollary to describe the properties of the solutions of KCFA, which makes it 
possible to solve the KCFA problem with incomplete Cholesky decomposition. Based on 
these discoveries, we presented a novel algorithm named the incomplete Cholesky 
decomposition based kernel cross factor analysis (ICDKCFA). The overall computational 
complexity of ICDKCFA is 2( )O M n , which is far lower than that of the original KCFA. 
Finally, the ICDKCFA was employed for continuous dimensional audiovisual emotion 
recognition. After the ICDKCFA feature transformation, two basic fusion strategies, i.e., 
feature-level fusion and decision-level fusion, were explored to combine the transformed 
visual and audio features for continuous dimensional emotion recognition. Extensive 
experiments were conducted to evaluate the ICDKCFA approach on the AVEC 2016 
Multimodal Affect Recognition Sub-Challenge dataset. The experimental results confirmed 
that compared to KCFA, our method significantly reduced the computational complexity 
while maintaining a comparable performance. Moreover, the ICDKCFA method achieved a 
better performance than other common information fusion methods such as CCA, KCCA， and 
CFA based fusion methods. Particularly, in the feature level fusion, the ICDKCFA method 
had a significant advantage in the recognition performance. 
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2. Kernel Cross-Model Factor Analysis 
The kernel cross modal factor analysis (KCFA) was proposed by Wang et al. in [4][5]. It is the 
kernel version of the linear cross modal factor analysis (CFA), which was proposed by Li et 
al.[6] to overcome the shortcomings of the canonical correlation analysis (CCA). Therefore, 
the KCFA can be seen as the development of the  KCCA. Moreover, the four transformations 
are similar in both definition and computation. 

2.1 Notations 
For the convenience of discussion, we give the meanings of the symbols used in this paper. 

Suppose 1{ }n p
i ix R= ∈ and 1{ }n q

i iy R= ∈ are zero mean sample vectors from two modalities 
respectively, ,p qx R y R′ ′∈ ∈ are two arbitrary sample vectors from the two modalities. 
Let 1 2( , , , )T

nX x x x=  , 1 2( , , , )T
nY y y y=  , and ,T T

xx yyC X X C Y Y= = are the within-sets 

covariance matrices, T
xyC X Y= is the between-sets covariance matrices. Let ψ and ϕ  be two 

nonlinear functions that map the vectors in pR and qR  to a higher dimensional space, 
respectively. Applying ψ , ϕ  to 1{ }n

i ix = , 1{ }n
i iy = , respectively, we can 

get 1{ ( )}n
i ixψ = and 1{ ( )}n

i iyϕ = , and let 1( ( ), , ( )) ,T
nx xψ ψΨ =  1( ( ), , ( ))T

nx xϕ ϕΦ =  . 
Let ( ( , ))T

x x i j n nK k x x ×= ΨΨ = , ( ( , ))T
y y i j n nK k y y ×= ΦΦ =  be the kernel matrices of the two 

set of samples, respectively, where ( , )xk ⋅ ⋅ ,  ( , )yk ⋅ ⋅  are the kernel functions corresponding to 
the maps ψ  andϕ . 

Suppose 1{ }d p
i iu R= ∈ ，  1{ }d q

i iv R= ∈ ，  ( min( , ))d p q≤ are two set of vectors, and let 

1 2( , , , )dU u u u=  ， 1 2( , , , )dV v v v=  . Similarly, suppose 1{ }d
i ia = ， 1{ }d

i ib =  are two set of 
vectors in the image space of ψ  and ϕ , respectively, and 

1 2 1 2( , , , ) , ( , , , )T T
d dA a a a B b b b= =  . 

2.2 Kernel Canonical Correlation Analysis 
With the notations given above, the objective function and constraint condition of CCA and 
KCCA are shown in Table 1.  

 

Table 1. The objective function and constraint condition of CCA and KCCA. 

 CCA KCCA 
Original form Regularization form 

Objective 
function 

1
1

( , , ), 1( , , )

max ( )
d
d

d
T

i xy iu u iv v

u C v
=
∑





or 

,
min

FU V
XU YV−  

1
1

( , , ), 1( , , )

max
d
d

d
T

i x y iu u iv v

u K K v
=
∑





 1
1

( , , ), 1( , , )

max
d
d

d
T

i x y iu u iv v

u K K v
=
∑





 

Constraint 
condition 

,T
xxU C U I=  

,T
yyV C V I=  

0,
, 1, , , .

T
i xy ju C v

i j d i j
=

= ≠

 

 
2 ,T
xU K U I=  
2 ,T
yV K V I=  

0,
, 1, , , .

T
i x y ju K K v

i j d i j
=

= ≠

 

2((1 ) ) ,T
x xU K K U Iτ τ− + =  
2((1 ) ) ,T
y yV K K V Iτ τ− + =  

0,
, 1, , , ,

T
i x y ju K K v

i j d i j
=

= ≠

 

0 1τ≤ ≤ is the 
regularization parameter 
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where
F

M  denotes the Frobenius norm of the matrix M  and can be expressed as 

2

ijF
i j

M m= ∑∑  . When xxC and yyC  are invertible, the optimization problem of CCA can 

be solved as a series of eigenvalue problems: 
1 1 1 1

12 2 2 2( ) ( )
xx xy yy yx xx xx i i xx iC C C C C C u C uλ
− −− ⋅ = ,                                    (1) 

1
yy yx i

i
i

C C uv λ
−

=  , 1, ,i d=  , 

where iλ  is the i the largest nonzero eigenvalue of 
1 1

12 2
xx xy yy yx xxC C C C C
− −−  [28]. 

The optimization problem of KCCA could be solved similarly. In order to overcome the 
impracticality of the original form of KCCA, a regularization parameter τ was used to 
construct the regularization form and the incomplete Cholesky decomposition with a precision 
parameter η  could be used to solve the computational issues [28][30]. 

2.3 Kernel Cross Modal Factor Analysis 
The objective function and constraint condition of CFA and KCFA are shown in Table 2. 
 

Table 2. The objective function and constraint condition of CFA and KCFA. 
 CFA KCFA 

Objective function 
2

,
min

FU V
XU YV−  2

,
min

FA B
A BΨ −F  

Constraint condition 
,TU U I=  
.TV V I=  

,TA A I=  
.TB B I=  

Comparing the objective function and constraint condition of CCA and CFA, we found that 
the two transformations had the same objective function, and different constraint condition. 
The constraint condition of CCA ,T

xxU C U I= ,T
yyV C V I= 0,T

i xy ju C v = , 1, , ,i j d i j= ≠ is 

changed as ,T TU U I V V I= = . It is this difference that results in the solution of CFA free from 
the restriction of the invertibility of xxC  and yyC . The optimization problem of CFA is 
equivalent to  

T T

T

T

X Y U V
U U I
V V I

 = Λ


=
 =

                                                       （2） 

Then, ,U V  can be obtained by implementing singular value decomposition (SVD) on TX Y . 
Let the SVD of TX Y be 

T T
xy xy xyX Y S D= ⋅Λ ⋅ .                                               （3） 

Then, ,xy xyU S V D= = , consequently, the representation of ,X Y  in the transformed domain 
is [4][5][6]:  

ˆ ˆ, .X XU Y YV= =                                                       （4） 
Similarly, for KCFA, suppose the singular value decomposition of TΨ Φ is [4][5] 

T TA BΨ Φ = Λ ，                                                （5） 
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Then, the representations of ,Ψ Φ  in the transformed domains are [4][5]  
ˆ ˆ,A BΨ = Ψ Φ =Φ .                                                （6） 

Furthermore, the representations of ( )xψ ′  and ( )yϕ ′  (the nonlinear function of x′  and y′ ) 
in the transformed domains are [4][5] 

ˆ ˆ( ) ( ) , ( ) ( )T T T Tx x A y y Byy  ϕ ϕ′ ′ ′ ′= = .                           （7） 
During the process of solving the KCFA, the key problem is to acquire ˆ ˆ( ), ( )x yy ϕ′ ′ without 
knowing the explicit expressions of ψ  andϕ . The problem was solved by the kernel trick in 

[4][5]. Suppose β  is an eigenvector of x yK K , then T T T T
yb Kbbbbb    = Φ Φ =Φ  is a 

column vector of B . Furthermore,  

( )1 1( ) ( ) ( , ), , ( , )
TT T T

y yT
y

y k y y k y y
K

βϕ β β
β β

 ′ ′ ′⋅ Φ Φ = ⋅   is a component of ˆ( )yϕ ′ . 

Similarly, suppose α is an eigenvector of y xK K , then T T
xa Kaaa  = Ψ  is a column vector 

of A , and, ( )1 1( , ), , ( , ) T
x xT

x

k x x k x x
K

α
α α

′ ′⋅   is a component of ˆ ( )xψ ′ . 

3. Incomplete Cholesky Decomposition Based Kernel Cross Modal 
Factor Analysis 

The algorithm used in [4][5] needs implementation of eigenvalue decomposition on x yK K  
and y xK K , whose dimensions are the number of the samples n . The complexity of each 

implementation is 3( )O n , which is a serious burden for a large data set.  Batch et al. [30] 
pointed out that given a precisionη , the kernel matrix can be approximated by a low-rank 
matrix with rank ( / )M h n h= . The function ( )h t  is determined by the kernel function and the 
decay of the distribution of the data. For the case of Gaussian kernels, when the decay is 
exponential, ( ) (log )h t O t= , and when the decay is polynomial (e.g., dx− ), 1/( ) ( )dh t O t ε+= , 
where ε  is an arbitrary positive real number. These mean that, in general, the low-rank 
approximation matrix has a rank M n . Based on this discovery, we employed the 
incomplete Cholesky decomposition to acquire the low-rank approximation of the kernel 
matrices, and present an efficient algorithm for KCFA, which is named as the incomplete 
Cholesky decomposition based KCFA (ICDKCFA) algorithm in this paper. 

3.1 Incomplete Cholesky Decomposition 
Incomplete Cholesky decomposition is often used to acquire the low-rank approximation of a 
kernel matrix. It is the incomplete form of the Cholesky decomposition. The Cholesky 
decomposition on a kernel matrix (take xK as an example) can be seen as the dual of 
Gram-Schmidt orthonormalization on the vectors 1{ ( )}n

i ixψ = . If the rank of xK  is n , using 
Gram-Schmidt orthonormalization, we can get the standard orthogonal basis 1 2{ , , , }nq q q  of 
the space spanned by 1{ ( )}n

i ixψ = . We denoted [ ]1 2, , , nQ q q q=  , then, T TQGΨ = , where TG  
is an upper triangular matrix with its ith column is the representation coeffcient of ( )ixψ  by 

1 2{ , , , }iq q q . Consequently, T T
xK GG= ΨΨ = ， this is the Cholesky decomposition of xK . 
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The ith element of the diagonal of TG , iiG  is the residual norm of the representation of ( )ixψ  
by 1 2 1{ , , , }iq q q − . So, iiG  demonstrates how independent ( )ixψ  is from 1 1{ ( ), , ( )}ix xψ ψ −  
[31]. In order to acquire the low-rank approximation matrix of xK  and at the same time 
maintain the most important dimensions of 1{ ( )}n

i ixψ = , we could vary the order of 1{ ( )}n
i ixψ =  

processed in Gram-Schmidt orthonormalization, such that the residual norm is always the 
largest [31]. Furthermore, if the residual norm is below a certain threshold, it will be ignored. 
Then, we obtained a new upper triangular matrix T

xG , with its ith column is the representation 
coefficient of ( )ixψ  by the standard orthogonal vectors acquired before, and perhaps the 
residual norm is ignored. Then, we got an approximation matrix T

x xG G  of xK , with its rank 

xm n  and the norm of T
x x xK G G−  was less than a given value η . The decomposition is 

referred to as the incomplete Cholesky decomposition, and the corresponding processing on 
1{ ( )}n

i ixψ =  is called partial Gram-Schmidt orthonormalization [31].  
Table 3 gives the pseudocode of incomplete Cholesky decomposition or dual partial 

Gram-Schmidt orthogonalization from [28] and [31] (with slightly changed). 
 

Table 3. Incomplete Cholesky decomposition algorithm 
Algorithm 1: Pseudocode for Incomplete Cholesky Decomposition /dual partial Gram-Schmidt 
orthongonalisation 
Input n n×  kernel matrix K and a precision parameter η   
Initialization: j=0; G is a zeros matrix with the size n n× ; d is a vector formed by the diagonal elements 
of K; a is the maximum element of d, and I(j+1) is the index of a in d. 
while 

1
( )n

i
d i η

=
>∑   

   j=j+1; 
   nu(j)= a ;  

G(:,j)=(K(:,I(j))-G(I(j),:)*GT)/nu(j); 
d=d-G(:,j).^2; 
I(j+1)=argmax(d); 
a=d(I(j+1)); 

end while 
M=j; 
G=G(:,1:M); 
Output: an n M×  lower triangular matrix G with TK G G η− ⋅ ≤ . 

3.2 Incomplete Cholesky Decomposition Based Kernel Cross Modal Factor 
Analysis 
As mentioned in Sub-Section 2.2, during the process of solving the KCFA, the key problem is 
to acquire ˆ ˆ( ), ( )x yy ϕ′ ′ without knowing the explicit expressions of ψ and ϕ . To accomplish 
this task, the key problem is to solve the singular value decomposition problem of TΨ Φ . In 
this sub-section, we present a theorem and its corollary to describe the property of the right and 
left singular vector of TΨ Φ  corresponding to a nonzero singular value. Based on these 
discoveries, we could use the incomplete Cholesky decomposition to solve the KCFA, and 
present the ICDKCFA algorithm.  (we still use the notations given in the previous section, but 
the meanings of , , ,U V A B  and their column vectors are redefined). 
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Theorem Let ,Ψ Φ  be two matrices with sized of ,n p n q× × , respectively, and 
T

xK = ΨΨ ， T
yK = ΦΦ . Suppose, σ  is a nonzero singular value of TΨ Φ . Then, ,u v  are the 

left and right singular vectors of TΨ Φ  corresponding to the singular value σ  if and only if 
there exists an eigenvectorα of y xK K corresponding to nonzero eigenvalue 2σ  such that 

,Tu α= Ψ (1 / ) T
xv Kσ α= ⋅Φ ; Or there exists an eigenvector β of x yK K  corresponding to 

nonzero eigenvalue 2σ such that ,Tv β= Ψ (1 / ) T
yu Kσ β= ⋅Φ . 

Proof:  
Suppose, ,u v  are the left and right singular vectors of TΨ Φ  corresponding to singular 

valueσ ，then, 
T T T

T

u v
v u

σ

σ

 Ψ Φ =

Ψ Φ =

.                                                （8） 

Taking transpose on the first equation of Equation (8), and left multiplying both side 
by TΨ Φ ,  we have 

2T T Tu v uσ σΨ Φ ⋅Φ Ψ = Ψ Φ =                                      （9） 
The second equality is by the second equation of Equation (8). Let 2/a u σ= Ψ  for the 

reason of 0σ ≠ . So, the left side of Equation (9) can be rewritten as 
2 2T T T T T

yu a K aσ σΨ ΦΦ Ψ = Ψ ΦΦ = Ψ .                           （10） 

So, 2 2 T
yu K aσ σ= Ψ ， consequently， T

yu K a= Ψ .  
Let yK aa = ， then 

Tu α= Ψ .                                                   （11） 
Left multiplying Equation  (9) by Ψ，we have 2T T u uσΨΨ Φ ⋅Φ Ψ = Ψ ，hence, 

2
x yK K a aσ= .                                                （12） 

Combining the definition of α  with Equation (12) we have 
2 2

y x y x y yK K K K K a K aa σ σ a= = = .                             （13） 

This shows that， α  is an eigenvector of y xK K corresponding to the eigenvalue 2σ . From 
the first equation of Equation (8) and 0σ ≠ , we have 

(1 / ) (1 / ) (1 / )T T T T
xv u Kσ σ α σ α= ⋅Φ Ψ = ⋅Φ ΨΨ = ⋅Φ .                           （14） 

Conversely, supposeα  is an eigenvector of y xK K  corresponding to eigenvalue 2σ ，and 
Tu α= Ψ ， (1 / ) T

xv Kσ α= ⋅Φ , then, 

( )T T T T T T T
xu K vα α σΨ Φ = ΨΨ Φ = Φ = ,                            （15） 

2(1 / ) (1 / ) (1 / )T T T T T T
x y xv K K K uσ α σ α σ σ α σ α σΨ Φ = Ψ Φ ⋅ ⋅Φ = ⋅Ψ = ⋅Ψ = Ψ = . （16） 

The two equations illustrate that ,u v are the left and right singular vectors of TΨ Φ  
corresponding to the singular value σ ,  respectively. 

The proof of the second equivalent conditions is similar to the above. 
From the theorem, the algorithm introduced in [4][5] can be perfected by doing eigenvalue 

decomposition once, and is not further mentioned. We introduce another algorithm here. 
From the theorem, we can have the following corollary. 
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Corollary Suppose ,u v are the left and right singular vectors of TΨ Φ  corresponding to the 

nonzero singular value σ , respectively. Then, there exist vectorsα , β  satisfies, 
T

T

u
v

α

β

 = Ψ


= Φ
. 

Suppose,  
T T

T

T

U U
U U I
V V I

Ψ Φ = Λ


=
 =

                                                        （17） 

is the SVD of TΨ Φ , where 1 1[ , , ], [ , , ]T TU u u V v v= =  , 1( , , )Tdiag σ σΛ =  , and T is the 
number of the nonzero singular value (multiple singular value calculated on multiplicity), 

iσ is the nonzero singular values, and iu , iv  are the corresponding left and right singular 
vectors. From the corollary, there exist [ ] [ ]1 1, , , , ,T TA Bα α β β= =   such that,  

T

T

U A
V B

 = Ψ


= Φ
.                                                        （18） 

The only work we need to do is to try to seek A and B . Substituting Equation (18) to 
Equation (17), we have 

T
x y

T
x

T
y

A K K B

A K A I

B K B I

 = Λ
 =
 =

.                                                 （19） 

Approximating the kernel matrices xK and yK via the incomplete Cholesky decomposition 
gives 

T
x x x

T
y y y

K G G

K G G

 ≈


≈
，                                                 （20） 

where xG , yG are lower triangular matrices with size ,x yn m n m× × （ xm n<< , ym n<< ). 
Substituting Equation (20) to Equation (19), we have: 

T T T
x x y y

T T
x x

T T
y y

A G G G G B

A G G A I

B G G B I

 = Λ
 =
 =

.                                     （21） 

Computing the SVD of xG , yG , we have ,T T
x x x x y y y yG U V G U V= Σ = Σ , where ,x yΣ Σ are 

diagonal matrixes whose elements of the main diagonal are the nonzero singular values of 
xG , yG . Then  

2 2

2

2

T T T
x x x y y y

T T
x x x

T T
y y y

A U U U U B

A U U A I

B U U B I

 Σ Σ = Λ
 Σ =
 Σ =                                 

（22） 

Let 
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1

2

T
x x

T
y y

U U A

U U B

 = Σ


= Σ
，                                            （23） 

Then, 

1 2

1 1

2 2

T T
x x y y

T

T

U U U U

U U I
U U I

 Σ Σ = Λ
 =
 =

.                                 （24） 

Let T
x x y yR U U= Σ Σ , then 1U ， 2U can be obtained by computing the SVD of R , and A , B can 

be solved from Equation (23) 
1

1
1

2

x x

y y

A U U

B U U

−

−

 = Σ


= Σ
.                                            （25） 

Then, the representations of ,Ψ Φ in the transformed domain, i.e., Equation (6) can be 
written as 

ˆ

ˆ

T
x

T
y

U A K A

V B K B

Ψ = Ψ = ΨΨ =

Φ = Φ = ΦΦ =

.                                （26） 

Furthermore, the representations of ˆ ˆ( ), ( )x yy ϕ′ ′  in the transformed domain, i.e., Equation 
(7) can be written as 

( )

( )
1

1

ˆ ( ) ( ) ( ) ( , ), , ( , )

ˆ( ) ( ) ( ) ( , ), , ( , )

TT T T
x x n

TT T T
y y n

x U x A x A k x x k x x

y V y B y B k y y k y y

yyy 

ϕ ϕ ϕ

 ′ ′ ′ ′ ′= = Ψ = ⋅


′ ′ ′ ′ ′= = Φ = ⋅





.                    （27） 

 
Table 4. ICDKCFA algorithm 

Algorithm 2: ICDKCFA Algorithm 
Input: the matrixes X and Y with their rows are the samples of the visual and audio features 
respectively, an arbitrary visual feature x′ and audio feature y′ , the parameters of the kernels, the 
precision parameter of the incomplete Cholesky decompositionη ; 
1) Using the input kernel parameters, compute the kernel matrixes ,x yK K  of the visual and audio 

features respectively, and 
1( ( , ), , ( , )),xx x x nK k x x k x x′ ′ ′=  1( ( , ), , ( , ))yy y y nK k y y k y y′ ′ ′=  ； 

2) Given the precision parameter η , compute the incomplete Cholesky decomposition of ,x yK K  

,T T
x x x y y yK G G K G G≈ ≈ ;  

3) Implement SVD on xG , yG respectively, and obtain ,T T
x x x x y y y yG U V G U V= Σ = Σ ;  

4) Implement SVD on T
x x y yR U U= Σ Σ , and obtain 1 1

TR U V= Σ ;  

5) Compute the representation coefficients: 1 1
1 2,x x y yA U U B U U− −= Σ = Σ ; 

6) Acquire the representations of the nonlinear function of ,x y′ ′ in the transformed domain:     
,T T T T

xx yyx A K y B K′ ′′ ′→ → ; 

Output: the representations of the nonlinear function of ,x y′ ′ in the transformed domain. 
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3.3 Performance Analysis Compared to the Original KCFA 

As discussed in Sub-Section 2.2, the solving of KCFA is to decompose TΨ Φ  as 
T TA BΨ Φ = Λ . So, if a  and b  are the same columns of A  and B , respectively, then  

T Ta b σΨ Φ =                                                             (28) 
 
Furthermore, if a  and b  are the different columns of A  and B , then 

0T Ta bΨ Φ =                                                             (29) 
 where σ  is the corresponding  singular value of  TΨ Φ .  

In the implementation of the original KCFA, the eigenvalue decomposition on x yK K  and 

y xK K  was done  separately to acquire the eigenvector β  of x yK K  and the eigenvector α  of 

y xK K . Based on this, the column of B could be constructed as T T
yb Kbbb  = Φ , and the 

column of A could be constructed as T T
ya Kaaa  = Φ . This algorithm could not guarantee 

the establishment of Equations (28) and (29). Even if β  and α  are selected as the 
eigenvectors of x yK K  and y xK K  corresponding to the same eigenvalue, respectively, when 
the dimension of the eigenvector space is greater than 1, the establishment of the Equations (28) 
and (29) are still not guaranteed. This will hurt the performance of the original KCFA. 
Additionally, in the implementation of the ICDKCFA, Equations (28) and (29) are guaranteed 
automatically.  
    The above analysis seems to indicate that the ICDKCFA outperforms the original KCFA in 
performance. However, in practice, this is not the case. In practice, due to the complexity and 
noise of the data, the situation that the dimension of the eigenvector space of x yK K  

corresponding to a nonzero eigenvalue is greater than 1 rarely occurs. In addition, in the 
implementation of ICDKCFA, the low-rank approximation of the kernels will also hurt the 
performance of the ICDKCFA. Therefore, in practice, the performance of the original KCFA 
and the ICDKCFA are comparable. 

4. Experiments 
In order to investigate the effectiveness of the ICDKCFA used for continuous dimensional 
emotion recognition, we conducted experiments on the datasets used in the AVEC 2016 
Multimodal Affect Recognition Sub-Challenge [15], which is a subset of the RECOLA 
database [32]. The dataset is referred to as the AVEC 2016 dataset. By performing ICDKCFA 
on the visual features 1{ }n p

i ix R= ∈ and audio features 1{ }n q
i iy R= ∈ , we could obtain the 

transformed features for arbitrary visual or audio feature by Equation (27). Based on these 
transformed features, we used feature-level and decision-level fusion strategies, respectively, 
to evaluate the effectiveness of the ICDKCFA for continuous dimensional emotion 
recognition. Furthermore, we compared the performance of the ICDKCFA based fusion 
method with other common information fusion methods such as the CCA, KCCA, and CFA 
based fusion methods. In order to make our results comparable, except for the different feature 
transformation methods, all of the methods or rules were the same throughout our experiment. 
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4.1 Dataset and Features 
The AVEC 2016 dataset contains multimodal recordings (including audio, video, 
electro-cardiogram, elector-dermal activity, etc.) from 27 subjects with five minutes for each. 
All of these signals were synchronously recorded. In this paper, we only used the audio and 
video data. The videos were recorded at 25 FPS, i.e., the interval between successive frames 
was 40ms. The ground truth labels were the time-continuous values (i.e., frame by frame ,  
every 40ms) of the arousal and valence dimensions. The recordings in the datasets were evenly 
divided into three subsets  to train, develop, and test the system, respectively. As we had no 
test labels, our systems were trained on the training set and evaluated on the development set. 

The features we used in this paper were the baseline features given in the AVEC 2016 [15]. 
For the video features, two types of features were given in [15]: appearance and geometric 
features. The appearance features were derived from LGBP_TOP (Local Gabor Binary 
Patterns from Three Orthogonal Planes) features. The geometric features originated from 49 
facial landmarks. The audio features were extracted by the OPENSMILE toolkit and based on 
the EGEMAPS (extended Geneva Minimalistic Acoustic Parameter Set) file. All of the 
features were provided separately for arousal and valence dimensions, and all of the features 
were given frame by frame (i.e., every 40 ms). As a result, the appearance, geometric and 
audio feature included 168 features × 7501 frames, 632 features × 7501 frames and 88 features 
× 7501 frames per file, respectively [15]. 

In our experiment, we combined the appearance and geometric features with the audio 
features using various fusion strategies, respectively. 

4.2 Performance Metric 
Following AVEC 2016 [15], we used the Concordance Correlation Coefficient (CCC) as the 
performance metric of the continuous dimensional emotion recognition. Suppose, ,x y  are two 
series, 2

xσ , 2
yσ  are the corresponding variance, xµ , yµ  are their mean value respectively, 

and ρ is the Pearson correlation coefficient between them. Then, the definition of the CCC of 
the two series is [15]  

2 2 2
(2 )

( ( ) )
x y

c
x y x y

ρσ σρ σ σ µ µ=
+ + −

.                               （30） 

4.3 Data Processing 
Before the features were input into a regression model, we had implemented a series of 
processing including (1) normalizing the data; (2) transforming to the transformation space; 
(3) delaying in the time; and (4) the dimension selection in the transformation space. 

Two normalizations were done on all of the three sets (training, development, testing) in our 
systems. One is that the features were normalized with a z-score before they were transformed;  
the other is that they were normalized to[ 1,1]− before they were input into a regression model.   

When transforming the features to the transformation space with various methods, if the 
kernel method was used, then the RBF kernel 2( , ) exp( / 2 )i j i jk x x x x σ= − − was used as the 

kernel function, and the kernel width σ was selected from 2k ( 3,5,7,9)k =  based on the final 
recognition performance. Furthermore, if the incomplete Cholesky decomposition was used, 
the precision was set as 0.1η = . Additionally, when performing KCCA, the regularization 
parameter τ  was selected from 0.05, 0.2, 0.6, and 1 based on the recognition performance. 
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Considering the time delay of the annotations to compensate the time reaction of the raters 
could improve the recognition performance was proved in [33]. The time delay could be done 
in various ways. One method was to directly drop the first N (N is the delay time measured by 
frame) labels and the last N feature frames before regression training [33]. Another method 
was used in [15], where the first N labels were dropped and the last label was duplicated, and 
the features remained unchanged. The predictions produced by the regressors trained by the 
above two kinds of training data had N frames ahead of the ground truth. In order to align with 
the ground truth, the predictions should be processed. There is no need to make the 
approximation of the training label in the first method, which is necessary for the second 
method, thus, it is expected to obtain better performance in the first approach. However, the 
operation process is too complex as it involves the processing of both the labels and features. 
To obtain better performance meanwhile simplifying the operation process, we implemented 
time delay by dropping the last N feature frames (the first feature frame was duplicated). Our 
method avoided the processing of both the training and predicted labels, so it is more efficient. 
Experiments with the audio feature and the arousal dimension label showed that using the 
same parameters, the CCC obtained on the development set were 0.787, 0.607, and 0.787 for 
the first, second, and our method, respectively. This showed that our method was an effective 
time delay method.  

With regard to the visual and audio mono-modal regressions, the best time delays (denoted 
as 1 2,t t , respectively) were selected from 1.2 s to 4 s by a step 0.4 s based on the final 
recognition performance [15]. For the bimodal regression, since the fusion strategy may 
change the mono-modal delay nature slightly, the best pair of delay times was selected from 
the various pairwise combination of 1 1 1{ 0.4, , 0.4}t t t− +  and 2 2 2{ 0.4, , 0.4}t t t− + . 

In order to obtain better recognition performance, the representation dimension of the 
features in the transformation space should be optimized. In this paper, the coarse optimal 
dimension (denoted as 0m ) was obtained by increasing the dimension from 10 by a step 20 and 
there was no improvement over the best performance after two iterations. Furthermore, we 
selected the best dimension from 0 0 0{ 10, , 10}m m m− + based on the recognition performance. 
The exception was for the KCCA based fusion method, by experience, a satisfactory 
performance was achieved when the representation dimension was high. So, the coarse 
optimal dimension was selected by decreasing the dimension from 300 by a step 20 and there 
was no improvement over the best performance after two iterations. 

4.4 Audiovisual information fusion 
After obtaining the transformed features which could be seen as the recognition features, 

both feature level and decision level fusion could be used to fuse the audiovisual information. 
For feature level fusion, the recognition features of the two modalities are concatenated as the 
input of a regression model [4][5]. For the decision level fusion, the predictions of the two 
single modalities were combined by linear regression [15]. Additionally, the predictions from 
the audio features were used as the final predictions when the visual features were missing. 

4.5 Regression Model 
The prediction of the continuous dimensional emotion is a regression problem [15][29]. The 
Support Vector Regression (SVR) with the RBF kernel was used as our regression model. 
LibSVM for Matlab Toolbox [34] was used to train the SVR model. During the parameter 
selection of SVR, for convenience, we set the cost term as 1C = . For the RBF kernel width G, 
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we first selected the best one (denoted as 02k ) from 2 , { 12, 10, , 2}k k∈ − − − , and then 
selected the best one from 0 0 01 1{2 ,2 ,2 }k k k− +  based on the recognition performance. 
 

4.6 Post Processing 
 In order to improve the prediction performance, a series of post processing were used in our 
system including median filtering, centering, and scaling [35]. 

For the median filter, the filter width was optimized by increasing the width from 10 (frames) 
by a step 10 and there was no improvement over the best performance after two iterations. The 
centering was realized by computing the bias between the predicted and the ground truth labels, 
and then subtracting the bias from the prediction. The scaling was realized by computing the 
ratio of standard deviation of the ground truth and the predicted labels, and then multiplying 
the prediction by the ratio [35]. 

4.7 Experimental Setup 
In our work, all the recognition systems were trained on the training set, and the parameters 
were optimized on the development set. When training the regression models, in order to 
reduce the memory requirement and the computation time, we concatenated the frames of all 
nine recordings (7501 * 9 frames) in the training set, then extracted one frame out of every 20 
frames. The number of frames actually used in the training set was 3375. The frames of all 
nine recordings (7501 * 9) in the development set were concatenated to evaluate the 
performance. 

When training the ICDKCFA, in order to reduce the memory requirement and the 
computation time while maintaining the reliability of the results, we omitted the frames where 
the visual data were missing, then extracted one frame out of every 15 frames. 

4.8 Experimental Results 
To show the effectiveness of the ICDKCFA, we fused the visual appearance features and 
visual geometric features with the audio features, respectively and the ICDKCFA were 
followed by both feature level and decision level fusion. Other common fusion strategies 
(including direct fusion method, i.e., the original features were used as the recognition 
features; original KCFA based fusion method; CFA based fusion method; CCA based fusion 
method; and KCCA based fusion method), and the mono-modal recognition were also used as 
the contrast methods..  

From the results in Tables 5-7, it can be seen that a good fusion method is crucial for 
multimodal emotion recognition. An inappropriate fusion method cannot improve the 
recognition performance, on the contrary, it might even degrade the performance. Using CCA 
based fusion as an example, except for the valence dimension recognition results based on the 
decision level fusion, all the others were inferior to the corresponding mono modal recognition 
results. This indicates that CCA based fusion was not suited to continuous dimensional 
emotion recognition. The reason for these results is that the computation of CCA involves the 
calculation of the inverse of xxC  and yyC , when at least one of the two matrices is 
non-invertible or close to non-invertible, a large error will be produced, and the recognition 
performance is poor. 
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Table 5. The recognition results on the development set based on feature-level fusion combined with 
various transformation methods. The results are measured by the CCC between the predicted and 

ground truth labels. (a) and (b) are the Visual-appearance Audio Fusion results and the 
Visual-geometric Audio Fusion results, respectively. 

Method Visual-appearance Audio Fusion  Method Visual-geometric Audio Fusion 
Arousal Valence Mean  Arousal Valence Mean 

ICDKCFA 0.825 0.587 0.706  ICDKCFA 0.838 0.719 0.779 
KCFA 0.826 0.587 0.707  KCFA 0.838 0.718 0.778 

Direct Fusion 0.805 0.552 0.679  Direct Fusion 0.804 0.657 0.731 
CFA 0.810 0.578 0.694  CFA 0.833 0.690 0.762 
CCA 0.433 0.387 0.410  CCA 0.432 0.387 0.4095 

KCCA 0.811 0.585 0.698  KCCA 0.808 0.675 0.742 
(a)                                                                               （b） 

 
Table 6. The recognition results on the development set based on decision-level fusion combined 

with various transformation methods. The results are measured by the CCC between the predicted and 
ground truth labels. (a) and (b) are the Visual-appearance Audio Fusion results and the 

Visual-geometric Audio Fusion results, respectively. 

Method Visual-appearance Audio Fusion  Method Visual-geometric Audio Fusion 
Arousal Valence Mean  Arousal Valence Mean 

ICDKCFA 0.805 0.611 0.708  ICDKCFA 0.816 0.700 0.758 
KCFA 0.805 0.611 0.708  KCFA 0.817 0.698 0.758 

Direct Fusion 0.801 0.551 0.676  Direct Fusion 0.803 0.679 0.741 
CFA 0.798 0.576 0.687  CFA 0.817 0.692 0.755 
CCA 0.772 0.516 0.644  CCA 0.780 0.618 0.699 

KCCA 0.807 0.598 0.703  KCCA 0.810 0.671 0.741 
                                        （a）                                                                            （b） 

 
Table 7. Mono-modal recognition results on the development set. The results are measured by the 

CCC between the predicted and ground truth labels. 
Features Arousal Valence mean 

Visual appearance 0.542 0.485 0.514 
Visual geometric 0.483 0.579 0.531 

Audio 0.787 0.465 0.626 
 
Comparing the recognition results based on direct fusion and the other fusion strategies, it 

can be seen that with the exception of the CCA based recognition results the latter were all not 
inferior to the former on average (average over the arousal and valence dimension). This 
indicates that identifying the relationship between the audio and visual modalities properly 
could improve the recognition performance in continuous dimensional emotion recognition. 

Comparing the recognition results based on the KCCA and ICDKCFA with the CCA and 
CFA based fusion strategies, respectively, it can be seen that the former were all superior to the 
latter on average. That is to say, the kernel versions of CCA and CFA were more effective in 
identifying the correlated information contained in the audio and visual modalities than the 
corresponding linear versions in the continuous dimension emotion recognition context.  

Comparing the recognition results based on the ICDKCFA and CFA with the KCCA and 
CCA based fusion strategies, respectively, it can be seen that the former had a significant 
advantage over the latter on average. This indicates that in the continuous dimensional 
emotion recognition context, the ICDKCFA, CFA had a significant advantage in extracting 
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the correlated information from the audio and visual modalities over the corresponding KCCA, 
CCA. Furthermore, the recognition performance of the CFA was comparable or even better 
than the KCCA. The reason for these phenomena is that the CFA and ICDKCFA involve no 
computation of inverse matrices, but CCA and KCCA do. When the matrices needed to 
inverse are non-invertible, a large error will be produced. Meanwhile, the regularization 
parameter in the KCCA will also produce errors. Therefore, the recognition performance 
improved by the advantage of analyzing the non-linear relationship of the KCCA is offset by 
the errors resulting from the regularization parameter and the computation of inverse matrices. 
Thereby, the recognition performance of the KCCA is only comparable or even worse than 
that of the CFA. 

In conclusion, in the continuous dimensional emotion recognition context, compared with 
other common fusion strategies, the ICDKCFA based fusion has an obvious advantage. 

The dimension at which the optimal performance was obtained for ICDKCFA based fusion 
method is shown in Table 8. In general, the feature level fusion would cause a large dimension, 
thereby increasing the computational cost and also degrading the recognition performance [1]. 
So, decision level fusion has been used more than feature level fusion in the literature, 
although the assumption of independence within different modalities is improper and would 
cause a loss of the relevant information within different modalities [1]. However, with the 
ICDKCFA transformation, the dimensions of the recognition features are small. The 
advantage of the feature level fusion is shown vividly. Except for the valence dimension 
recognition result for the Visual-appearance Audio fusion, feature level fusion had the better 
recognition result. For the Visual-appearance Audio fusion on valence dimension, at the 
dimension 100, the decision level fusion achieved its best performance of 0.611, which is 
higher than the best performance of the feature level fusion. This again verifies that when the 
representation dimension is high, the feature level fusion has few advantages. 

 
Table 8. The dimension at which the optimal performance was obtained for ICDKCFA based fusion. 

(a) and (b) are for the Visual-appearance Audio Fusion and the Visual-geometric Audio Fusion, 
respectively. 

Fusion level 
Visual-appearance Audio 

Fusion  Fusion level 
Visual-geometric Audio 

Fusion 
Arousal Valence  Arousal Valence 

Feature level 30 40  Feature level 20 70 
Decision 

level 40 100  Decision 
level 30 50 

（a）                                                                         （b） 
 

Comparing the recognition performance of the ICDKCFA with the original KCFA, we can 
see that the two algorithms had a comparable recognition performance. Sometimes, the 
ICDKCFA performed some less well e.g., the arousal prediction from the Visual-appearance 
Audio feature level fusion framework. Sometimes, the ICDKCFA performed better than the 
original KCFA, e.g., the performance of the valence prediction from the Visual-geometric 
Audio in both the feature level fusion and decision level fusion framework. These phenomena 
confirmed the analysis in Sub-Section 3.4.  

Comparing the recognition performance of the ICDKCFA based fusion approaches with 
the post processing mentioned in Sub-Section 4.6 with that and without it, we can see that the 
post processing could effectively improve the performance. The effect of the post processing 
on the prediction is shown in Fig. 1. From Fig. 1, it can be seen that, with the median filtering, 
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the prediction was smoothed, then the random noise was reduced. Combined with the 
centering and scaling, the predicted and ground truth label obtained a better match. 

 

 
Fig. 1. Effect of post processing on the predicted arousal label of the first recording in development set 
obtained from the Visual-geometric Audio feature fusion. (a) Prediction without post processing; (b) 
Prediction with the median filtering; (c) Prediction with the median filtering and centering; and (d) 

Prediction with median filtering, centering, and scaling. 
 
 

Table 9. The baseline results of the AVEC 2016 on the development set 
Features Arousal Valence 

Visual appearance 0.483 0.474 
Visual geometric 0.379 0.612 

Audio 0.796 0.455 
Multimodal Fusion 0.820 0.702 

 
Comparing our results with the AVEC 2016 baseline results, which are shown in Table 9, it 

can be seen that although the mono-modal recognition performance of ours was not better than 
that of the baseline, the ICDKCFA based feature level Visual-geometric Audio fusion results 
were better than the baseline multimodal fusion results. The unsatisfactory performance of the 
mono modal recognition showed that the regression model had room for improvement. If a 
better regression model is carefully selected, the results could be significantly better. 
Furthermore, only two features were used in our multimodal recognition, however, eight 
features were used in the AVEC 2016 baseline, if the other modalities could also be used, the 
recognition results could be better. However, our ICDKCFA model could not implement 
multimodal analysis of more than two modalities, which will be an interesting work to do in 
the future. 

 

4.9 Running Time and Computational Complexity Analysis 
The above experiments showed that the ICDKCFA had a comparable performance with the 
original KCFA in the final recognition results, however, it had a faster running speed. In order 
to show this, we removed the frames with missing data from the visual appearance features 
and the corresponding frames from the audio features of the arousal dimension, and extracted 
the first 5000 frames for experiment. The experiment setup and the running time are shown in 
Table 10.  
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Table 10. The experiment setup and running time for training the representation coefficients 

Method Computer 
Configuration Software 

RBF 
kernel 
width 

Incomplete Cholesky 
Decomposition Precision 

Parameter 

Running 
Time 

ICDKCFA Intel(R) Core(TM) 
i7-4790 CPU @ 3.60 

GHz 

Matlab 
R2014a 

72  
0.1 15s 

(appr.) 

KCFA - 350s 
(appr.) 

 
The results in Table 10 indicate that ICDKCFA runs much faster than the original KCFA. 

In fact, the results can also be inferred from the computational complexity analysis. Let 
max( , )x yM m m= , where ,x ym m are the number of columns of ,x yG G  or the rank of the 

low-rank approximation matrix of ,x yK K . Then, M n , where n  is the number of samples. 
In practice, using the incomplete Cholesky decomposition to approximate the kernel matrix, 

the full calculation of the matrix is actually avoided [30].  To acquire the low-rank 
approximation of xK and yK  from the sample matrices X  and Y , the overall complexity 

was 2 22 ( ) ( )O M n O M n× = . The sizes of ( )x yG G did not exceed n M× , then the 

implementations of  SVD on xG and yG  have the cost of 2( )O M n . The size of T
x x y yR U U= Σ Σ  

is not exceed M M× , then the complexity of performing SVD on R is 3( )O M . The size of 
( )x yU U  does not exceed n M× , ( )x yΣ Σ  is a diagonal matrix with size not exceeding M M× , 

and the size of 1 2( )U U does not exceed M M× , consequently, the acquisitions of A  and B  
have the cost of 2( )O M n . Finally, the acquisitions of the representation of x′ , y′  have the cost 
of ( )O Mn . In conclusion, the overall complexity of the ICDKCFA is 2( )O M n , which is far 
lower than 3( )O n , which is the complexity of the original KCFA. 

5. Conclusions 
In this paper, a novel ICDKCFA was presented to allow the KCFA to handle the large amount 
of data encountered in continuous dimensional emotion recognition. Based on the presented 
ICDKCFA, the visual and audio features were fused to recognize the continuous dimensional 
emotion. As shown in the experiment and analysis, the presented ICDKCFA performed faster 
than the original KCFA while maintaining a comparable performance. Compared with other 
common fusion methods, the ICDKCFA performed the best. The performance result of the 
ICDKCFA based audiovisual recognition was even superior to the multimodal (four 
modalities, eight features) recognition. The SVR model was used as the regression model in 
this paper. If the regression model is selected carefully, the performance would be better. 
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