
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, Feb. 2019 686
Copyright ⓒ 2019 KSII

Packet Output and Input Configuration in a
Multicasting Session Using Network Coding

José Márquez1*, Ismael Gutiérrez2, Sebastián Valle1 and Melanis Falco1

1 System and Computer Department, Universidad del Norte
Km. 5 Puerto Colombia Highway, Barranquilla - Colombia

 [e-mail: jmarquez@uninorte.edu.co]
2 Math Department, Universidad del Norte

Km. 5 Puerto Colombia Highway, Barranquilla - Colombia
 [e-mail: isgutier@uninorte.edu.co

*Corresponding author: José Márquez

Received February 9, 2018; revised June 21, 2018; accepted August 19, 2018;
published February 28, 2019

Abstract

This work proposes a model to solve the problem of Network Coding over a
one-session multicast network. The model is based on a system of restrictions that
defines the packet flows received in the sink nodes as functions of the outgoing flows
from the source node. A multicast network graph is used to derive a directed labeled
line graph (DLLG). The successive powers of the DLLG adjacency matrix to the
convergence in the null matrix permits the construction of the jump matrix
Source-Sinks. In its reduced form, this shows the dependency of the incoming flows in
the sink nodes as a function of the outgoing flows in the source node. The emerging
packets for each outgoing link from the source node are marked with a tag that is a
linear combination of variables that corresponds to powers of two. Restrictions are
built based on the dependence of the outgoing and incoming flows and the packet tags
as variables. The linear independence of the incoming flows to the sink nodes is
mandatory. The method is novel because the solution is independent of the Galois field
size where the packet contents are defined.

Keywords: Multicast network, Linear Network Coding, Linear Constraint System, Network
Coding Solution, Directed Labeled Line Graph

The authors would like to thank Research, Development and Innovation Management of the Universidad del Norte
(DIDI) for their support in presenting this work.

http://doi.org/10.3837/tiis.2019.02.012 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 687

1. Introduction

Traditional routing mechanisms allow intermediate nodes to execute storage-and-forward
actions; therefore, each packet (the element of the vector space 𝔽𝔽𝑞𝑞𝑛𝑛, where 𝔽𝔽𝑞𝑞 is the finite field
with 𝑞𝑞 elements and 𝑞𝑞 = 2) is a copy of a previously received packet in an input link to the
node. In multicast systems, intermediate nodes can receive packets over input links, besides
they can be duplicated and forwarded to multiple output links. However, this mechanism is
prone to traffic congestion.

However, Network Coding (NC) [1–3] allows each router, which acts as a node in the
network, to carry out the mixing of its incoming packets by computing a linear combination,
not only in the source and sinks nodes, but also in the intermediate nodes. Fig. 1 shows a node
(router) with three incoming packet flows and two outgoing flows, which are a linear
combination of the incomers. When NC is used in transmissions, especially multicast
transmissions, packets can be forwarded, mixed (coded) at intermediate nodes, and decoded to
obtain the original packets at the sink nodes [4]. Therefore, NC theory shows that the
transmission of information in a multicast system can be improved and surpass the paradigm
of routing and data replication.

Fig. 1. Computing outgoing packets from incoming packets

According to [5], "Network Coding means that bits in information flows do not have to be

delivered as a commodity; these can be mixed as desired, as long as the receiving computers
have received enough evidence or clues to reconstruct the original packets of the sending
computer."

Fig. 2 (in [4] and [6]) shows a network consisting of directed links with the same capacity of
𝐵𝐵 bps. Without intermediate routing nodes, the source computers 𝑠𝑠1 and 𝑠𝑠2 send a packet
stream to the receiving computers 𝑡𝑡2 and 𝑡𝑡1, respectively. In turn, the source computer 𝑠𝑠1
attempts to send packets to computer 𝑡𝑡1 , and computer 𝑠𝑠2 attempts to send packets to
computer 𝑡𝑡2. Observation shows that the outgoing packets of 𝑠𝑠1 reach 𝑡𝑡1 only through the path
𝑠𝑠1 → 1 → 3 → 4 → 6 → 𝑡𝑡1, and the outgoing packets of 𝑠𝑠2 reach 𝑡𝑡2 only through the path 𝑠𝑠2
→ 2 → 3 → 4 → 5 → 𝑡𝑡2. It is clear that the link (3,4) is shared and acts as a bottleneck for
simultaneous transmission.

Fig. 2. Two unicast sessions in contention for the link (3,4) [4]

688 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

If the nodes that make up the Fig. 2 network only route the information they receive, then
link (3,4) must be shared between the two unicast sessions, which only allows the following
set of transmission rates {(𝑟𝑟1, 𝑟𝑟2)|𝑟𝑟1, 𝑟𝑟2 ≥ 0, 𝑟𝑟1 + 𝑟𝑟2 ≤ 𝐵𝐵} and these are interpreted graphically
in Fig. 3(a) [7]. It is not possible for any of the unicast sessions to establish a communication
stream with a rate greater than 𝐵𝐵 . However, if the network nodes can implement NC,
specifically on node 3 of the shared link (3,4), then both sessions can reliably communicate at
rate 𝐵𝐵 , which permits the set of transmission rates {(𝑟𝑟1, 𝑟𝑟2)|0 ≤ 𝑟𝑟1 ≤ 𝐵𝐵, 0 ≤ 𝑟𝑟2 ≤ 𝐵𝐵 } as
shown in Fig. 3(b) [7]. Therefore, the region of Fig. 3(b) comprises all of the possible flow
rates, and this is called the capacity region for these sessions [4] [7]. For both unicast sessions,
rate 𝐵𝐵 is achieved by mixing the information flows in node 3 using the XOR operation. By
applying the XOR operation again, the original flows are obtained in nodes 5 and 6. In Fig. 2,
the blue and purple line links carry the original information flows, whereas the red links carry
the mixed flow.

Fig. 3. The ranges of reachable transfer rates for (a) traditional routing and (b) routing with NC [4]

According to [8], the current communications networks share the same fundamental

operating principle. Regardless of whether packets are sent over the Internet or signals on a
telephone network, the information is transported like vehicles traveling along a highway. Just
as cars share the road, data flows share the resources of the network. However, the information
packets themselves, like individual cars, are separate.

Currently, communication networks treat data packets as unmodifiable units; that is, data
packets produced at the source are routed through the network until they reach a sink. In this
process, each packet remains intact. The NC paradigm, which was initially proposed in [1],
breaks with this previous assumption. It suggests that instead of merely forwarding data, nodes
can combine several incoming packets into one or more outgoing packets, which makes it
unnecessary to deliver the actual packets produced by the source node to the sink nodes. The
sink nodes can obtain the original packets through a process of decoding the received packets.

This work proposes a system of linear equations (constraints) whose solution determines the
ordering of the 𝑟𝑟-packets over the vector space 𝔽𝔽𝑞𝑞𝑛𝑛 in the outgoing links from the source node,
where 𝑟𝑟 corresponds to the maximum flow of a multicast session. This ordering ensures that
the packets are correctly delivered to the sink nodes. Packets can be sent from the source node
in the original format (single packets) or in linear combinations of single packets (combined
packets). Also, combined packets can be created through inner nodes of the network. These
packets, which are defined over 𝔽𝔽𝑞𝑞𝑛𝑛 , arrive at the sink nodes where they must be linearly
independent so that the system has a solution.

The importance of this work is that the most relevant constraints derived from the solution
define each incoming flow in each sink as a linear combination of some of the outgoing flows
in the source node. The resulting linear combinations are expressed in terms of the codes
representing the packets. The packets are tagged as variables based on a code system over the
vector space 𝔽𝔽2𝑟𝑟, where the constraints are set with coefficients over 𝔽𝔽2.

This work can neither be extended directly to a network with losses or errors in the packets,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 689

nor when there are broken links. However, for future studies with transport protocols and error
control, along with routing protocols for updating the routes, they can use the results achieved
from this study for the most efficient delivery of the packets. Currently, large Internet
providers include redundancy at three levels to mitigate these problems. The first is at the
router level, which can have more than one high capacity processor installed. The second level
is the connection of more than one link between a pair of routers. Finally, there is the
redundancy of destination routers from an origin with a high traffic load. An example of a
redundancy application is the Virtual Router Redundancy Protocol (VRRP) [29].

Knowledge of the topology is a prerequisite for the objective proposed in this work. An
algorithm must run to determine the paths that lead from the source node to the set of sink
nodes before the application of the proposed model. The algorithm would demand a high
computational cost when determining the topology that favors the use of Network Coding due
to the unknown and complex nature of the global network through which the multicast routing
would be conducted. The determination of the multicast network has become one of the most
complex tasks for the construction of a solution with Network Coding [19]. However, after the
algorithm defines the topology, the overhead would be subject to the convergence times
involved in the entry and exit of the nodes, and the breakdown and recovery of the links. These
times are within a few seconds with current processor technologies.

Two topologies with coding nodes were utilized to show the application of the explained
model. The topologies do not have a specific name. The main advantage of these topologies is
that they show the simultaneous sending of packets from the source node, the construction of
linear combinations in the coding nodes, and the decoding of packets in the sinks. The main
disadvantage is that in the case of implementation, there should be a synchronization of the
packets sent at the exit and arrival to the routers to achieve reception and decoding in the sinks.

This paper is organized as follows. Section 2 is a review of the studies related to the proposal.
Section 3 explains the principles of construction of the network model. A detailed explanation
of the proposed problem is included in Section 4. Section 5 describes the representation of the
network model in matrices and the classification of the links. Section 6 discusses the
construction of the solution bases and the algorithms that support it. Section 7 shows how to
obtain the constraints of the model from the exposed bases. Section 8 provides examples of the
implementation of this proposal. Finally, the conclusion and recommendation of future work
are presented in Section 9.

2. Related Work
The initial theoretical work in NC was developed by Ahlswede et al. [1] and was modeled with
a directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with links without noise and with capacities of a symbol of a field
𝔽𝔽𝑞𝑞 per unit of time. They showed that a source node, 𝑠𝑠 ∈ 𝑉𝑉, can send the same information to
a set of sink nodes, 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑑𝑑} ⊂ 𝑉𝑉, where 𝑠𝑠 ∉ 𝑇𝑇, at a maximum data rate 𝑟𝑟.

Ahlswede et al. demonstrated that the problem with a multicast session is an
underutilization of resources by restricting the use of the network nodes to only the execution
of the routing function. Their work also demonstrated that the multicast capability, 𝑟𝑟(𝑠𝑠,𝑇𝑇), or
the maximum rate at which a source node can transmit common information to a set of sink
nodes, is determined by the lower value of the maximum flows from the source node 𝑠𝑠 to each
of the sink nodes 𝑡𝑡 ∈ 𝑇𝑇. That is:

𝑟𝑟(𝑠𝑠,𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡). (1)
The above result is known as information flow theorem, which is considered a

generalization of the classic max-flow-min-cut theorem for commodity flow [9] and was

690 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

tested independently by Elías et al. [10] and Ford and Fullkerson [11] [12] in 1956.
NC demonstrates that it is possible to increase performance and gain an advantage over

traditional routing mechanisms. Also, whereas routing mechanisms cannot achieve multicast
capacity, it can be achieved through NC.

Li et al. [3] demonstrated that linear coding functions in the inner nodes are enough to
achieve the maximum multicast capacity and thus define Linear Network Coding (LNC). LNC
considers messages as packets consisting of elements over a finite field 𝔽𝔽𝑞𝑞 [13], which can be
represented by a binary vector of length 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑞𝑞) bits [6]. The coding function that generates a
message emerging from a node is a simple linear combination of incoming messages to the
node over the finite field 𝔽𝔽𝑞𝑞. Likewise, linear operations on incoming information permit
decoding in the sink nodes.

Koetter and Médard [2] [14] showed that linear solutions exist for solvable multicast
networks with an alphabet of some finite field whose size is a power of two and is as large as
𝑟𝑟|𝑇𝑇|. Also, they demonstrated how to find the coefficients of linear coding and decoding
functions by searching for the values of the variables of a non-zero polynomial. However, for
the solution of the multicast problem, the structure they proposed produces a polynomial time
algorithm. Authors in [15–17] showed how to find the linear coding and decoding coefficients
for a multicast session through an algorithm that runs in polynomial time over a finite field of
maximum size |𝑇𝑇|.

The authors of [18] proposed a significant improvement to the performance of end-to-end
multicast transmission through the replication and forwarding of data by overlay nodes instead
of sending them through end systems. In their work, they determined that overlay nodes have
the total capacity to encode and decode data at the message level using LNC. They also
proposed a distributed algorithm to construct a directed acyclic graph (DAG) corresponding to
the multicast network in which NC is applied. This algorithm duplicates end-to-end
performance in several cases.

The NC-based multicast routing algorithm proposed in [19] aims to find the path-clusters
between the source node and each sink. The path-cluster corresponds to the 𝑟𝑟 paths of disjoint
links between the source node and each sink in a multicast system. Through the labeling
algorithm, it is possible to find the maximum flow 𝑟𝑟 between any two nodes in a network [20]
[21] and also obtain the 𝑟𝑟 disjoint paths for each sink node in a multicast session.

In [22], a routing and coding scheme is presented to achieve maximum packet transport in a
multicast session by determining and combining the paths of the multiple maximum flows
through overlapping links. The authors propose that only the links and nodes in the combined
maximum flows will be used to construct the coding and routing scheme.

Based on the advantages of the shortest path Dijkstra algorithm and NC, the proposed
routing algorithm [23] has a higher performance and load balancing capacity than the shortest
path distribution tree algorithm.

3. Principles of Model-Building

3.1 Communications Network Model
This work studies multicast transmission (wired or wireless) with the purpose of sending the
same information from a source node to all sink nodes at the same data rate (bandwidth). This
communications network is modeled with a directed, acyclic and lossless (entirely reliable)
link graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 represents the set of nodes (routing only or routing/coding),
and 𝐸𝐸 is the set of directed links that join the nodes. Let 𝑖𝑖, 𝑗𝑗 ∈ ℕ, then it is established that

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 691

∀𝑒𝑒 ∈ 𝐸𝐸 , it is represented as the ordered pair 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗), where 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉 are ordered
topologically, and this indicates that 𝑖𝑖 < 𝑗𝑗. The flow of information goes from node 𝑖𝑖 to node
𝑗𝑗, and delays in transmission are not considered. The origin and the destination node of a link
𝑒𝑒 = (𝑖𝑖, 𝑗𝑗) is denoted by 𝑜𝑜(𝑒𝑒) = 𝑖𝑖 and 𝑑𝑑(𝑒𝑒) = 𝑗𝑗, respectively. In simple multicast
communication, the sender or source node 𝑠𝑠 ∈ 𝑉𝑉 can transmit the same information to a set of
sink nodes 𝑇𝑇⊆𝑉𝑉, where 𝑠𝑠 ∉ 𝑇𝑇.
Γ𝐼𝐼(𝑖𝑖) is defined in [2] as the set of links that enter node 𝑖𝑖 ∈ 𝑉𝑉, and Γ𝑂𝑂(𝑖𝑖) as the set of links

that originate in 𝑖𝑖. Formally, this is written as:
Γ𝐼𝐼(𝑖𝑖) = {𝑒𝑒 ∈ 𝐸𝐸| 𝑑𝑑(𝑒𝑒) = 𝑖𝑖}. (2)
Γ𝑂𝑂(𝑖𝑖) = {𝑒𝑒 ∈ 𝐸𝐸| 𝑜𝑜(𝑒𝑒) = 𝑖𝑖}. (3)

𝛿𝛿𝐼𝐼(𝑖𝑖) is also defined as the degree or number of links entering 𝑖𝑖, whereas 𝛿𝛿𝑂𝑂(𝑖𝑖) is the degree
or number of links that emerge from 𝑖𝑖: formally, 𝛿𝛿𝐼𝐼(𝑖𝑖) = |Γ𝐼𝐼(𝑖𝑖)| and 𝛿𝛿𝑂𝑂(𝑖𝑖) = |Γ𝑂𝑂(𝑖𝑖)|.

Each link 𝑒𝑒 ∈ 𝐸𝐸 is associated with a non-negative number 𝐶𝐶(𝑒𝑒), which is called the capacity
of 𝑒𝑒. A node 𝑖𝑖 can send information through a link 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗), at a maximum rate of 𝐶𝐶(𝑒𝑒) bits
per unit of time. The bit stream (called a random process in [2] [24]) is transmitted through
link 𝑒𝑒 and is denoted by 𝑓𝑓𝑒𝑒 o 𝑓𝑓𝑖𝑖𝑖𝑖. Also, at node 𝑖𝑖, the flows 𝑓𝑓𝑒𝑒′ enter through each 𝑒𝑒′ ∈ Γ𝐼𝐼(𝑖𝑖).
In general, the stream of the bits 𝑓𝑓𝑒𝑒 , transmitted through link 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗) ∈ Γ𝑂𝑂(𝑖𝑖) will be a
function of all of the flows 𝑓𝑓𝑒𝑒′, assuming that 𝑒𝑒′ ∈ Γ𝐼𝐼(𝑖𝑖).

3.2 Maximum Transmission Rate
The model aims to send the same information from the source node to each sink node at the
maximum possible data rate. We let 𝑟𝑟(𝑠𝑠,𝑇𝑇) (or simply 𝑟𝑟) denote the rate at which the same
information can reliably be transmitted to each sink node 𝑡𝑡 ∈ 𝑇𝑇 . It is observed that the
maximum transmission rate or bandwidth, 𝑟𝑟(𝑠𝑠,𝑇𝑇), has as an upper bound related to the
minimum of the maximum flows between 𝑠𝑠 and each 𝑡𝑡 ∈ 𝑇𝑇, which indicates that 𝑟𝑟(𝑠𝑠,𝑇𝑇) ≤
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡). Likewise, in [25], the MaxFlow-MinCut theorem proved that the
minimum cut, 𝑠𝑠 -𝑡𝑡 , is equal to the maximum flow for the unicast case, i.e., 𝑟𝑟(𝑠𝑠,𝑇𝑇) ≤
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡). This maximum transmission rate is only achievable in a network where
multicast communication is performed using NC, and this is demonstrated by [1].

In the proposed model, the maximum transmission rate, 𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡) ,
between source node 𝑠𝑠 and set 𝑇𝑇 of the sink nodes in a multicast session corresponds to the
maximum number of packets generated in the source node 𝑠𝑠, which is the same number of
packets delivered in each of the nodes 𝑡𝑡 ∈ 𝑇𝑇. The generated and delivered 𝑟𝑟 packets are 𝑙𝑙
symbols length (bits that are over the field 𝔽𝔽2). Therefore, the unit of measure of 𝑟𝑟 in bits
(symbols) per unit of time (as mentioned in earlier sections) is no longer considered.

3.3 Symbols, Codes and Fields
The directed links of 𝐺𝐺 can reliably carry packet 𝑝𝑝, where 𝑝𝑝 is a vector of length 𝑙𝑙 bits set over
the finite field 𝔽𝔽𝑞𝑞 , 𝑞𝑞 = 2𝑚𝑚, and 𝑚𝑚 is the number of bits per symbol over the finite field. The
number 𝐿𝐿 of symbols of length 𝑚𝑚 bits constituting the packet is determined by:

𝐿𝐿 = �
𝑙𝑙

𝑙𝑙𝑙𝑙𝑙𝑙2�𝔽𝔽𝑞𝑞�
� = �

𝑙𝑙
𝑙𝑙𝑙𝑙𝑙𝑙2(2𝑚𝑚)� = �

𝑙𝑙
𝑚𝑚�

. (4)

For example, given a network with a packet 𝑝𝑝 of 12 bits long and 3 bits per symbol (they are
over the field 𝔽𝔽23), the following values are deduced:

The length of packet 𝑙𝑙 is 12 bits. The number of 𝑚𝑚 bits per symbol over the finite field 𝔽𝔽𝑞𝑞 is
3 bits per symbol. The number of 3-bit symbols over the finite field 𝔽𝔽𝑞𝑞 is �𝔽𝔽𝑞𝑞� = 23 = 8 3-bit

692 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

symbols. The number of symbols in the packet is 𝐿𝐿 = � 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
3 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑠𝑠𝑠𝑠𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏

� = 4 symbols over the
field 𝔽𝔽𝑞𝑞. It is observed that the packet has a length of 12 bits, 𝑝𝑝 ∈ 𝔽𝔽𝑞𝑞4 , with 𝑞𝑞 = 23. All of the
packets generated and transmitted through the network links will be over the vector space 𝔽𝔽23

4 ,
and a total of �𝔽𝔽23

4 � different packets can be generated.
A sample of these packets is shown below with the 3-bit symbols grouped in parentheses:

𝑝𝑝1 = [(001)(010)(100)(110)]
𝑝𝑝2 = [(010)(000)(110)(110)]
𝑝𝑝3 = [(100)(110)(001)(101)]

3.4 Vector Spaces and Packets
Packets are classified as simple or combined. Simple packets are the original packets
generated by the client’s computer placed before the source node and obtained (through linear
decoding) in the |𝑇𝑇| sink nodes, whereas combined packets are the result of linear
combinations that occur along the multicast transmission from the source node 𝑠𝑠 to any of the
sink nodes in 𝑇𝑇.

The source node 𝑠𝑠 receives the 𝑟𝑟 simple packets that determine the maximum flow of the
multicast session from the sending computer, and each content of a simple packet 𝑝𝑝 is defined
over 𝔽𝔽2𝑙𝑙 . For example, if 𝑙𝑙 = 7, the packets generated and received by 𝑠𝑠 belong to the vector
space 𝔽𝔽27 and are 7 bits long.

In the model, each packet corresponds to an information unit constituted by 𝑙𝑙 bits and each
network link is defined by a bandwidth equal to the information unit. All of the links in the
model have the same capacity.

Let 𝑐𝑐(𝑝𝑝) be the code of packet 𝑝𝑝; the simple and combined 𝑟𝑟 packets built along the
transmission to the 𝑇𝑇-nodes are represented (or tagged) by codes belonging to the set:

℘ = {𝑐𝑐(𝑝𝑝)|𝑐𝑐(𝑝𝑝) ∈ [1: 2𝑟𝑟 − 1] }. (5)
The codes of simple packets shape the ℘𝑢𝑢 set, such that ℘𝑢𝑢 ⊂ ℘, where:

℘𝑢𝑢 = �𝑐𝑐(𝑝𝑝)|𝑐𝑐(𝑝𝑝) = 𝑢𝑢𝑖𝑖 = �0𝑖𝑖−1, 1, 0𝑟𝑟−𝑖𝑖�, 𝑖𝑖 = 1, … , 𝑟𝑟�. (6)
The vector 𝑢𝑢𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ vector of the canonical basis of 𝔽𝔽2𝑟𝑟. The number of codes in ℘ that

can be handled in a multicast session of maximum flow 𝑟𝑟 is |℘| = 2𝑟𝑟 − 1, and the number of
codes corresponding to the simple packets is |℘𝑢𝑢| = 𝑟𝑟.

In addition, the simple packet codes (or tags) are also represented by mnemonics
corresponding to an alphabet Σ = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑟𝑟} and are related following the topological
ordering of the alphabet symbols as specified in the following bijective function:

𝑔𝑔:℘𝑢𝑢 ⟼ Σ
𝑔𝑔(𝑢𝑢𝑖𝑖) = 𝐴𝐴𝑖𝑖

(7)

From function 𝑔𝑔, it follows that Σ = {𝐴𝐴𝑖𝑖|𝐴𝐴𝑖𝑖 = 𝑔𝑔(𝑢𝑢𝑖𝑖), 𝑢𝑢𝑖𝑖 ∈ ℘𝑢𝑢}, and |Σ| = 𝑟𝑟.
For example, if 𝑟𝑟 = 3, the sets ℘,℘𝑢𝑢 and Σ are:

℘ = {001,010,011,100,101,110,111}, ℘𝑢𝑢 = {001,010,100} and Σ = {𝐴𝐴,𝐵𝐵,𝐶𝐶}, where
𝑔𝑔(001) = 𝐴𝐴 , 𝑔𝑔(010) = 𝐵𝐵, and 𝑔𝑔(100) = 𝐶𝐶.

From the above, the codes representing the 𝑟𝑟 packets that can be transmitted from the source
node 𝑠𝑠, in a multicast session are nonzero elements of the vector space 𝔽𝔽2𝑟𝑟. That is, packets are
distinguished by their representative codes and not by their contents. Likewise, if the
mnemonics or codes that identify two or more packets are different, then so are their contents.

In each coding/routing node, the outgoing packet corresponds to a linear combination of the
incoming packets and uses as global coding coefficients [24], the symbols (bits) with a value
of 1 belong to the field 𝔽𝔽2. This linear combination translates into a bit-by-bit sum of the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 693

component bits of the packets that enter the node.
For example, in Fig. 4, each packet 𝑝𝑝𝑖𝑖, arriving at coding node 𝑐𝑐 has length 𝑙𝑙, which is

𝑝𝑝𝑖𝑖 ∈ 𝔽𝔽2𝑙𝑙 and each 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ∈ 𝔽𝔽2 . In node 𝑐𝑐 , the linear combination for each output link is
established. During the transmission and propagation process, the new packet 𝑝𝑝1 + 𝑝𝑝2 and
length 𝑙𝑙 is forwarded bit-by-bit from node 𝑐𝑐 to each of the adjacent nodes, which are
connected to the output links. It is important to highlight that because of this approach, the
𝑙𝑙-bitwise sums are calculated between the two packets to determine the combined packet.

4. Proposed Problem

4.1 Statement of the Problem
The NC problem (and determining a solution) on a multicast session has been approached in
different ways according to [2] [16] [17]. However, in all cases, it has been revised from the
contents of the messages or packets, which limits the solution to the size of the field to which
the contents belong.

Fig. 4. The bit-by-bit linear combination in the packets

A multicast session for a communications network is configured with a source node 𝑠𝑠, a set

of sink nodes 𝑇𝑇, a unit capacity of information per link of length 𝑙𝑙 bits and a maximum flow 𝑟𝑟
for each node in 𝑇𝑇 as shown in Fig. 5.

The goal is to determine the tag or code in ℘ that names the packets for each of the 𝜅𝜅 output
links 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝜅𝜅 that emerge from the source node 𝑠𝑠. This process guarantees the reception
of independent linear combinations into the sink nodes to retrieve the codes in ℘𝑢𝑢 of the
original simple 𝑟𝑟-packets. The packets are sent through the inner links and the nodes of 𝐺𝐺 and
are tagged with codes in ℘ or specified as linear combinations of the mnemonics in Σ.

This goal includes accommodating (on each outgoing link 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝜅𝜅 from 𝑠𝑠) the best tag
combination (vectors 𝑢𝑢𝑖𝑖 or their linear combinations) in ℘ to transfer across the network
internally and obtain the tags of the original packets for each node in 𝑇𝑇 and through the
solution of a system of linearly independent constraints. That is, the linear combinations
generated in 𝑟𝑟 paths that reach each node in 𝑇𝑇 from 𝑠𝑠 must be linearly independent.

The solution is established without considering the size of the field to which the contents of
the packets belong. That is, regardless of its length in bits, only the size of the tag or code of
each packet generated in the source node will be considered.

In Fig. 5 and for each outgoing link from 𝑠𝑠, packets emerge and are generated with either
𝐴𝐴𝑖𝑖 = 𝑔𝑔(𝑢𝑢𝑖𝑖) or linear combinations of codes representing the tags in ℘𝑢𝑢. A packet stream must
enter each sink node, where the codes representing the stream are in ℘ and must be linearly
independent. Incoming codes are the result of linear combinations during transmission
through the inner nodes.

694 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

4.2 Upper Bound of the Number of Outputs
It is important to note that the solution is not unique to any 𝐺𝐺-graph representing a multicast
session. We let 𝜎𝜎 denote the number of possible combinations of packets sent through the
outgoing links from 𝑠𝑠. The solutions are specified in two terms: for simple packets and for
combined packets.

The maximum number of combinations of simple packets emerging from node 𝑠𝑠 through
the outgoing links is:

𝜎𝜎 = 𝑟𝑟𝜅𝜅 . (8)

Fig. 5. A general vision of the problem

If it is considered that node (router) 𝑠𝑠 can generate linear combinations from the simple

packets entering it, then it would be possible to obtain up to a maximum limit of combinations:

𝜎𝜎 = ���𝑟𝑟𝑖𝑖�
𝑟𝑟

𝑖𝑖=1

�
𝜅𝜅

= (2𝑟𝑟 − 1)𝜅𝜅 . (9)

It is important to specify that not all combinations are valid solutions to the multicast
problem proposed because they would have no solution in the incoming links to the sink
nodes.

5. Representation of the Network Model

5.1 Network Adjacency Matrix
An adjacency matrix represents the communication network for a multicast session with the
different routes from 𝑠𝑠 to the sinks in 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑑𝑑}. Each cell in the matrix represents the
capacity of each of the links that make up the network after obtaining the disjoint paths from 𝑠𝑠
to each sink. This matrix is called 𝐶𝐶 and is |𝑉𝑉| × |𝑉𝑉| in size, where:

𝐶𝐶(𝑖𝑖, 𝑗𝑗) = �
0, (𝑖𝑖, 𝑗𝑗) ∉ 𝐸𝐸
1, (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. (10)

As previously specified, in link 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗), 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 < 𝑗𝑗, a topological ordering of the links
in 𝐸𝐸 is reached.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 695

5.2 Classification of the Links
A link 𝑒𝑒 ∈ 𝐸𝐸 can be classified according to whether 𝑜𝑜(𝑒𝑒) is the source node or not and if 𝑑𝑑(𝑒𝑒)
is in 𝑇𝑇 or not, in any of the following types:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑒𝑒) = �

0, 𝑜𝑜(𝑒𝑒) ≠ 𝑠𝑠,𝑑𝑑(𝑒𝑒) ∉ 𝑇𝑇
1, 𝑜𝑜(𝑒𝑒) = 𝑠𝑠,𝑑𝑑(𝑒𝑒) ∉ 𝑇𝑇
2, 𝑜𝑜(𝑒𝑒) ≠ 𝑠𝑠,𝑑𝑑(𝑒𝑒) ∈ 𝑇𝑇
3, 𝑜𝑜(𝑒𝑒) = 𝑠𝑠,𝑑𝑑(𝑒𝑒) ∈ 𝑇𝑇.

 (11)

Type 0 corresponds to the inner links, which originate from a node other than 𝑠𝑠 and whose
destinations do not belong to set 𝑇𝑇. Type 1 links are called outgoing links since they originate
from 𝑠𝑠 and end in any node that does not belong to 𝑇𝑇.

Type 2 links are called incoming links since they originate from a node other than 𝑠𝑠 and end
in any node belonging to 𝑇𝑇. Finally, type 3 links are called outgoing-incoming links since they
send packets directly from 𝑠𝑠 to a sink in 𝑇𝑇 without passing through inner links.

A limited number of packets arrive at each sink node as determined by the upper boundary
of the flow of the multicast network. Since the capacity of each link 𝑒𝑒 ∈ 𝐸𝐸,𝐶𝐶(𝑒𝑒) = 1, the
number of incoming links that carry the flow to each sink node is equal to

𝑟𝑟(𝑠𝑠,𝑇𝑇) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡). (12)
The set of outgoing links is noted as 𝑆𝑆, which corresponds to the following definition:

𝑆𝑆 = {𝑒𝑒 ∈ 𝐸𝐸 | 𝑜𝑜(𝑒𝑒) = 𝑠𝑠, 𝑑𝑑(𝑒𝑒) ∉ 𝑇𝑇}. (13)
The set of incoming links is noted as 𝐿𝐿 and corresponds to the following definition:

𝐿𝐿 = {𝑒𝑒 ∈ 𝐸𝐸 | 𝑜𝑜(𝑒𝑒) ≠ 𝑠𝑠,𝑑𝑑(𝑒𝑒) ∈ 𝑇𝑇}. (14)
The set of outgoing-incoming links is noted as 𝐾𝐾, which is defined as:

𝐾𝐾 = {𝑒𝑒 ∈ 𝐸𝐸 | 𝑜𝑜(𝑒𝑒) = 𝑠𝑠,𝑑𝑑(𝑒𝑒) ∈ 𝑇𝑇}. (15)
From section 4.1, (13), and (15) it was determined that the number of links emerging from 𝑠𝑠

is |𝑆𝑆 ∪ 𝐾𝐾| = |𝑆𝑆| + |𝐾𝐾| = 𝜅𝜅; and from (14) and (15) it was established that |𝐿𝐿 ∪ 𝐾𝐾| = |𝐿𝐿| +
|𝐾𝐾| = 𝑟𝑟|𝑇𝑇|.

5.3 Links Table
The links table is constructed as shown in Table 1 from the adjacency matrix 𝐶𝐶 , which
represents 𝐺𝐺 and the classification of the links.

Table 1. Links table format
Index 𝑙𝑙
Origin 𝑖𝑖
Destination 𝑗𝑗
Type 0, 1, 2, and 3

If 𝐶𝐶(𝑖𝑖, 𝑗𝑗) = 1, link 𝑒𝑒𝑙𝑙 = (𝑖𝑖, 𝑗𝑗) with index 𝑙𝑙 contains 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑙𝑙) = 𝑖𝑖 (the same as 𝑜𝑜(𝑙𝑙) = 𝑖𝑖)

and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑙𝑙) = 𝑗𝑗 (the same as 𝑑𝑑(𝑙𝑙) = 𝑗𝑗). 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) is specified according to what was
previously defined.

Let 𝜆𝜆 be the number of entries in the links table or the number of links in the graph, which is
determined by the number of cells in 𝐶𝐶 whose value is 1 and is defined as:

𝜆𝜆 = ��𝐶𝐶(𝑖𝑖, 𝑗𝑗)
|𝑉𝑉|

𝑗𝑗=1

|𝑉𝑉|

𝑖𝑖=1

. (16)

696 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

6. Solution Bases

6.1 Directed Labeled Line Graph and Hop Matrix
The directed labeled line graph (DLLG) [2] [14] derived from 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is 𝔊𝔊 = (𝒱𝒱,ℰ),
which is constructed from the capacity matrix 𝐶𝐶 with the following rules:
1) Each node 𝑣𝑣 ∈ 𝒱𝒱, corresponds to a directed link 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, then 𝒱𝒱 = 𝐸𝐸.
2) Each link 𝑒𝑒′ ∈ ℰ, is defined as 𝑒𝑒′ = (𝑒𝑒1, 𝑒𝑒2), where 𝑒𝑒1, 𝑒𝑒2 ∈ 𝐸𝐸 and 𝑑𝑑(𝑒𝑒1) = 𝑜𝑜(𝑒𝑒2) and

therefore ℰ = {(𝑒𝑒1, 𝑒𝑒2) ∈ 𝐸𝐸2|𝑑𝑑(𝑒𝑒1) = 𝑜𝑜(𝑒𝑒2)}.
3) Adjacency matrix 𝐹𝐹 = �𝐹𝐹(𝑘𝑘, 𝑙𝑙)�𝑘𝑘=1,𝑙𝑙=1

|𝒱𝒱|
 is built for graph 𝔊𝔊 , where any link 𝑒𝑒′ =

(𝑒𝑒1, 𝑒𝑒2) ∈ ℰ is labeled according to (17)

𝐹𝐹(𝑒𝑒1, 𝑒𝑒2) = �1, 𝑑𝑑(𝑒𝑒1) = 𝑜𝑜(𝑒𝑒2)
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (17)

The matrix of hop 𝐹𝐹, which results from the above rules, has the following characteristics:
1) It is an upper diagonal matrix with zeros on the main diagonal because it is constructed

from a graph whose nodes and links are labeled in topological order.
2) Given the above, it is a nilpotent matrix [26], which indicates ∃𝑛𝑛 ∈ ℕ such that 𝐹𝐹𝑛𝑛 = 0.

3) Given the nilpotency of 𝐹𝐹, the 𝐹𝐹ℎ = �𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙)�
𝑘𝑘=1,𝑙𝑙=1

|𝒱𝒱|
 matrix is generated, where each

𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) , 1 ≤ ℎ ≤ 𝑛𝑛, is interpreted according to its value as:

𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) = �
𝑖𝑖, 𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 𝑖𝑖𝑖𝑖 ℎ ℎ𝑜𝑜𝑜𝑜𝑜𝑜.
0, 𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 𝑖𝑖𝑖𝑖 ℎ ℎ𝑜𝑜𝑜𝑜𝑜𝑜. (18)

6.2 Source-Sinks Hop Matrix
From the matrix of a hop and its properties and using Algorithm 1, the Source-Sinks Hop
matrix 𝑄𝑄 is constructed and has a size of (|𝑆𝑆| + |𝐾𝐾|) × |𝐸𝐸|.

Algorithm 1: Construction of the Source-Sinks Hop matrix
Input: 𝑭𝑭,𝑺𝑺 ∪ 𝑲𝑲,𝑬𝑬
Output: Source-Sinks Hop matrix 𝑸𝑸
//The rows of 𝑄𝑄 are constituted by links 𝑘𝑘 such that 𝑘𝑘 ∈ 𝑆𝑆 ∪ 𝐾𝐾.
//The columns of 𝑄𝑄 are constituted by every link 𝑙𝑙 ∈ 𝐸𝐸 (including the inner or type 0 links,
which are not necessary for the final model).
1 Initialize 𝑄𝑄 with 𝑄𝑄(𝑘𝑘, 𝑙𝑙) = 0, (∀𝑘𝑘 ∈ 𝑆𝑆 ∪ 𝐾𝐾, (∀𝑙𝑙 ∈ 𝐸𝐸))
2 For each 𝐹𝐹ℎ, (1 ≤ ℎ < 𝑛𝑛) //Actualization of Q
3 For each 𝑘𝑘 ∈ 𝑆𝑆 ∪ 𝐾𝐾
4 For each 𝑙𝑙 ∈ 𝐸𝐸
5 If 𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) >= 1 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) = 2
6 𝑄𝑄(𝑘𝑘, 𝑙𝑙)+= 𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) //Increases by 𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) each time
7 End If
8 End For
9 End For
10 End For
11 Return 𝑸𝑸

In conclusion, each 𝑄𝑄(𝑘𝑘, 𝑙𝑙) ≠ 0 represents the number of times that the outgoing link flow

𝑘𝑘 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) = 1), contributes in a linear combination to the calculation of the incoming link

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 697

flow 𝑙𝑙 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) = 2). That is, if 𝑓𝑓𝑘𝑘 corresponds to the outgoing flow from 𝑠𝑠 and is transmitted
through the outgoing link 𝑘𝑘 , then 𝑄𝑄(𝑘𝑘, 𝑙𝑙) ∗ 𝑓𝑓𝑘𝑘 is the flow that will transit in a linear
combination through the incoming link 𝑙𝑙 to the sink node 𝑑𝑑(𝑙𝑙). Thus, 𝑓𝑓𝑘𝑘 will contribute
𝑄𝑄(𝑘𝑘, 𝑙𝑙) times to the linear combination of the incoming flow through the incoming link 𝑙𝑙 to the
sink node 𝑑𝑑(𝑙𝑙). Actually, the flow from which the outgoing link 𝑘𝑘 will contribute is 𝑓𝑓𝑘𝑘 if
𝑄𝑄(𝑘𝑘, 𝑙𝑙) is an odd integer and it is zero, otherwise.

Let ℒ = {𝑙𝑙 ∈ 𝐸𝐸 | 𝑑𝑑(𝑙𝑙) ∉ 𝑇𝑇} and the links with destinations not in 𝑇𝑇, i.e., 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) = 0 or
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) = 1 . From this definition and previous definitions, the following theorems are
established:
Theorem 1: Let 𝒍𝒍 ∈ 𝑳𝑳, then 𝑸𝑸𝑻𝑻(𝒍𝒍) ≠ 𝟎𝟎 (𝑸𝑸𝑻𝑻(𝒍𝒍) denotes the 𝒍𝒍𝒕𝒕𝒕𝒕 column of matrix 𝑸𝑸 and 𝑸𝑸𝑻𝑻 is
the transpose of 𝑸𝑸).
Proof: If 𝑙𝑙 ∈ 𝐿𝐿, by definition of set 𝐿𝐿, then 𝑑𝑑(𝑙𝑙) ∈ 𝑇𝑇. Besides, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) = 2 and so for each
iteration of Algorithm 1 until 𝐹𝐹𝑛𝑛 = 0 is reached, when there are ℎ hops from 𝑘𝑘 to 𝑙𝑙; that is,
when 𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) = 𝑖𝑖, the increase of cell 𝑄𝑄(𝑘𝑘, 𝑙𝑙) is achieved, and this prevents 𝑄𝑄𝑇𝑇(𝑙𝑙) = 0 ∎
Theorem 2: Let 𝒍𝒍 ∈ 𝓛𝓛, then 𝑸𝑸𝑻𝑻(𝒍𝒍) = 𝟎𝟎.
Proof: If 𝑙𝑙 ∈ ℒ, then by definition of set ℒ, 𝑑𝑑(𝑙𝑙) ∉ 𝑇𝑇. Besides, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) ≠ 2 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙) ≠ 3,
and so for each iteration of Algorithm 1 until 𝐹𝐹𝑛𝑛 = 0 is reached, the increase in cell 𝑄𝑄(𝑘𝑘, 𝑙𝑙)
will not be achieved and this will lead to 𝑄𝑄𝑇𝑇(𝑙𝑙) = 0 ∎
Theorem 3: If 𝒍𝒍 is a link where 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝒍𝒍) = 𝟑𝟑, then 𝑸𝑸𝑻𝑻(𝒍𝒍) = 𝟎𝟎.
Proof: If 𝑙𝑙 is a type 3 link, then 𝑙𝑙 ∈ 𝐾𝐾 and by definition 𝑜𝑜(𝑙𝑙) = 𝑠𝑠 and 𝑑𝑑(𝑙𝑙) = 𝑡𝑡 ∈ 𝑇𝑇. This
indicates that 𝑙𝑙 is a direct link from 𝑠𝑠 to 𝑡𝑡 with no intermediate nodes. Thus, there are no links
before or after 𝑙𝑙, and consequently, 𝑙𝑙 is an incoming link with no hops where each iteration of
Algorithm 1 produces 𝐹𝐹ℎ(𝑘𝑘, 𝑙𝑙) = 0,∀𝑘𝑘 ∈ 𝑆𝑆 ∪ 𝐾𝐾 and results in 𝑄𝑄𝑇𝑇(𝑙𝑙) = 0 ∎
𝑄𝑄 contains |ℒ| columns in 0, and these are called non-sink columns, which do not show any

relationship between an outgoing link and an incoming link or specifically between node 𝑠𝑠
and some 𝑡𝑡 ∈ 𝑇𝑇. Furthermore, they fulfill Theorem 2.

The rest will be called sink columns, which are constituted by columns 𝑙𝑙 whose 𝑑𝑑(𝑙𝑙) ∈ 𝑇𝑇,
i.e., the columns that fulfill Theorem 1 or Theorem 3.

The running time of Algorithm 1 is 𝑂𝑂(𝑛𝑛|𝑆𝑆 ∪ 𝐾𝐾||𝐸𝐸|) = 𝑂𝑂(𝑛𝑛𝑛𝑛|𝐸𝐸|).

6.3 Reduced Source-Sinks Hop Matrix
In the Source-Sinks Hop matrix, the |ℒ| columns in 0 (non-sink columns) that correspond with
links 𝑙𝑙′ ∈ 𝐸𝐸 such that 𝑑𝑑(𝑙𝑙′) ∉ 𝑇𝑇, are eliminated to get the Reduced Source-Sinks Hop matrix,
i.e., only the columns corresponding to type 2 or type 3 links are kept. 𝑄𝑄𝑟𝑟 denotes the Reduced
Source-Sinks Hop matrix, and (|𝑆𝑆| + |𝐾𝐾|) × (|𝐿𝐿| + |𝐾𝐾|) = 𝜅𝜅𝜅𝜅|𝑇𝑇| is its dimension.
Algorithm 2 shows the process of reducing the Source-Sinks Hop matrix.

Algorithm 2: Reduced Source-Sinks Hop Matrix
Input: 𝑸𝑸,𝑳𝑳 ∪ 𝑲𝑲,𝑺𝑺 ∪ 𝑲𝑲
Output: 𝑸𝑸𝒓𝒓
1. Initialize 𝑄𝑄𝑟𝑟 with 𝑄𝑄𝑟𝑟(𝑘𝑘, 𝑙𝑙) = 0, (∀𝑘𝑘 ∈ 𝑆𝑆 ∪ 𝐾𝐾, (∀𝑙𝑙 ∈ 𝐿𝐿 ∪ 𝐾𝐾))
2. For each link 𝑙𝑙 ∈ 𝐿𝐿 ∪ 𝐾𝐾
3. 𝑄𝑄𝑟𝑟𝑇𝑇(𝑙𝑙) = 𝑄𝑄𝑇𝑇(𝑙𝑙)
4. End For
5. Return 𝑄𝑄𝑟𝑟

The running time of Algorithm 2 is 𝑂𝑂(|𝑆𝑆 ∪ 𝐾𝐾||𝐿𝐿 ∪ 𝐾𝐾|) = 𝑂𝑂(𝜅𝜅𝜅𝜅|𝑇𝑇|).

698 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

7. Construction of constraints

7.1 Principles of the Proposed Method
The proposed model starts with the graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), which represents a multicast network
of a single source node 𝑠𝑠, a set of sink nodes 𝑇𝑇, maximum flow 𝑟𝑟, and capacity 𝐶𝐶(𝑒𝑒) = 1 for
each link 𝑒𝑒 ∈ 𝐸𝐸. The goal was to construct a system of linear constraints formed by variables
that represent the outgoing, incoming, and outgoing-incoming packet flows, where each flow
is represented by the code associated with the packet (a simple or a combined packet) that can
travel through the link. The model is based on three principles:

7.1.1 Definition of Constraints in the Source Node
In node 𝑠𝑠, different packets are created and distinguished with a tag length of 𝑟𝑟-bits and with
𝐴𝐴𝑖𝑖 = 𝑔𝑔(𝑢𝑢𝑖𝑖), where 𝑢𝑢𝑖𝑖 is the vector defined in section 3.4. From this node, |𝑆𝑆| + |𝐾𝐾| links
(outgoing and outgoing-incoming) emerge and allow the establishment of 𝑟𝑟 possible output
packets for each of these links. Then, it is deduced that the following simple flows (a single
packet per outgoing or outgoing-incoming link) can be obtained according to the relationship:

𝑓𝑓𝑒𝑒 = 𝐴𝐴1| 𝐴𝐴2| … |𝐴𝐴𝑟𝑟,∀𝑒𝑒 ∈ 𝑆𝑆 ∪ 𝐾𝐾. (19)
It is possible that for each link ∈ 𝑆𝑆 ∪ 𝐾𝐾 , there is a linear combination (combined packets) of

simple packets emerging, tagged with some 𝑢𝑢𝑖𝑖, and generating a packet 𝑝𝑝𝑒𝑒 tagged 𝑐𝑐(𝑝𝑝𝑒𝑒) ∈ ℘
that is stored in the combined flow 𝑓𝑓𝑒𝑒:

𝑓𝑓𝑒𝑒 = � 𝑢𝑢𝑖𝑖
𝑢𝑢𝑖𝑖∈℘

= � 𝐴𝐴𝑖𝑖
𝑢𝑢𝑖𝑖∈℘,𝑔𝑔(𝑢𝑢𝑖𝑖)=𝐴𝐴𝑖𝑖

,∀𝑒𝑒 ∈ 𝑆𝑆. (20)

The previous equation can also be written as:
𝑓𝑓𝑒𝑒 ≠ 0. (21)

for every case where 𝑓𝑓𝑒𝑒 ∈ 𝔽𝔽2r ∖ 0 o 𝑓𝑓𝑒𝑒 ∈ ℘.

7.1.2 Definition of the Constraints on Hops from an Outgoing to an Incoming
Link
Given the graph of Fig. 6, let 𝑓𝑓𝑠𝑠𝑣𝑣1 be a flow that emerges from 𝑠𝑠, which will arrive through the
different links that form the path, and by the principle of the conservation of flow [21] [27], the
following relationship of equality is deduced:

𝑓𝑓𝑠𝑠𝑣𝑣1 = 𝑓𝑓𝑣𝑣1𝑣𝑣2 = ⋯ = 𝑓𝑓𝑣𝑣𝑗𝑗−1𝑣𝑣𝑗𝑗 = 𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡. (22)

Fig. 6. The path from a source node to a sink node

This equality should not be taken in a strictly literal sense. Equality, in this case, indicates

that the flow to the left of equality contributes to the flow of the right. This means that it will be
part of the linear combination built to obtain the flow through each output link at each
intermediate node of the path. That is, the flow of one output link is increased by the flow
preceding it within this equality.

On a path from 𝑠𝑠 to sink 𝑡𝑡, let 𝑓𝑓𝑘𝑘 and 𝑓𝑓𝑙𝑙 be flows such that 𝑓𝑓𝑘𝑘 = 𝑓𝑓𝑙𝑙 through the links 𝑘𝑘 and
𝑙𝑙, where 𝑑𝑑 (𝑘𝑘) = 𝑜𝑜 (𝑙𝑙). From this equality two scenarios can be derived:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 699

(a) If 𝑑𝑑(𝑘𝑘) is a classical routing node, the incoming flow 𝑓𝑓𝑘𝑘 is the same outgoing flow 𝑓𝑓𝑙𝑙,
since there is no linear coding at the output and the flow enters through the input link and
passes identically to the output link.

(b) If 𝑑𝑑(𝑘𝑘) is a coding node, the incoming flow 𝑓𝑓𝑘𝑘 is a component of the linear combination
formed in the output links of the node, that is:

𝑓𝑓𝑙𝑙 = ⋯+ 𝑓𝑓𝑘𝑘 + ⋯. (23)
From the scenario in (a) and (22), if there is no coding node in the path from 𝑠𝑠 to 𝑡𝑡, then:

𝑓𝑓𝑠𝑠𝑣𝑣1 = 𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡. (24)
That is, the flow originates at source node 𝑠𝑠, which is transmitted through the outgoing link

(𝑠𝑠, 𝑣𝑣1) and is the same in the incoming link (𝑣𝑣𝑗𝑗, 𝑡𝑡) after 𝑗𝑗 hops.
If there is a coding node in graph 𝐺𝐺, paths will be generated from 𝑠𝑠 to sink 𝑡𝑡 as shown in Fig.

7, where two outgoing paths from 𝑠𝑠 converge on the coding node 𝑣𝑣𝑗𝑗−1. Hence, the following
two relationships of the equality of flows from 𝑠𝑠 to 𝑡𝑡 are established:

𝑓𝑓𝑠𝑠𝑣𝑣1 = 𝑓𝑓𝑣𝑣1𝑣𝑣2 = ⋯ = 𝑓𝑓𝑣𝑣𝑗𝑗−1𝑣𝑣𝑗𝑗 = 𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡. (25)
and

𝑓𝑓𝑠𝑠𝑤𝑤1 = 𝑓𝑓𝑤𝑤1𝑤𝑤2 = ⋯ = 𝑓𝑓𝑣𝑣𝑗𝑗−1𝑣𝑣𝑗𝑗 = 𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡 . (26)

Fig. 7. The confluence of paths at the coding node

It is observed that �𝑣𝑣𝑗𝑗−1,𝑣𝑣𝑗𝑗� is a bottleneck link and flow 𝑓𝑓𝑣𝑣𝑗𝑗−1𝑣𝑣𝑗𝑗 originates in coding node

𝑣𝑣𝑗𝑗−1. Also, flows 𝑓𝑓𝑠𝑠𝑣𝑣1and 𝑓𝑓𝑠𝑠𝑤𝑤1 emerge from 𝑠𝑠 through links (𝑠𝑠, 𝑣𝑣1) and (𝑠𝑠,𝑤𝑤1), respectively.
According to (25) and (26), they contribute to 𝑓𝑓𝑣𝑣𝑗𝑗−1𝑣𝑣𝑗𝑗, and according to (23), they form the
linear combination:

𝑓𝑓𝑣𝑣𝑗𝑗−1𝑣𝑣𝑗𝑗 = 𝑓𝑓𝑠𝑠𝑣𝑣1 + 𝑓𝑓𝑠𝑠𝑤𝑤1 . (27)
Therefore, from (25), (26) and (27), it is deduced that the flow in the incoming link �𝑣𝑣𝑗𝑗, 𝑡𝑡�

will directly depend on the outgoing flows from 𝑠𝑠 through the outgoing links (𝑠𝑠, 𝑣𝑣1) and
(𝑠𝑠,𝑤𝑤1) by the relation:

𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡 = 𝑓𝑓𝑠𝑠𝑣𝑣1 + 𝑓𝑓𝑠𝑠𝑤𝑤1 . (28)
In both (25) and (28), the flows in the incoming links to the node 𝑡𝑡 ∈ 𝑇𝑇 correspond to

packets of size 𝑙𝑙-bits over the vector space 𝔽𝔽2𝑙𝑙 as specified in section 3.3, which is the same as
the packets of the outgoing flows.

7.1.3 Definition of Constraints in the Incoming Links
In every sink node, 𝑡𝑡 ∈ 𝑇𝑇, the following rules must be observed:

(a) Incoming flows must be non-zero; if 𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡 is the flow arriving at 𝑡𝑡 and through the
incoming link �𝑣𝑣𝑗𝑗, 𝑡𝑡�, the packet flowing through this link and incoming to 𝑡𝑡 must have
a tag or linear combination that is different to 0; that is, according to Fig. 8, it must be
observed that:

700 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡 ≠ 0,∀�𝑣𝑣𝑗𝑗, 𝑡𝑡� ∈ 𝐿𝐿. (29)
(b) The linear combination of the incoming flows to a sink node must be non-zero; similarly,

it must be observed that the linear combination of the packet codes (or tags) that enter
each sink node through the incoming flows must be a value other than 0. That is,
according to Fig. 8, the following constraint is established:

�𝑓𝑓𝑣𝑣𝑗𝑗𝑡𝑡

𝑟𝑟

𝑗𝑗=1

≠ 0,∀𝑡𝑡 ∈ 𝑇𝑇. (30)

(c) The matrix formed from codes that tag the incoming link flows must have a range 𝑟𝑟; the
packet codes that arrive within each flow to the node 𝑡𝑡 must be linearly independent.
That is, the bits that make up the code of each packet in each incoming flow to sink node
𝑡𝑡 form the rows of square matrix 𝑃𝑃 of dimension 𝑟𝑟 × 𝑟𝑟 with 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑃𝑃) = 𝑟𝑟. The rows
of 𝑃𝑃 represent the codes of the 𝑟𝑟-packets with size 𝑟𝑟-bits that enter the sink node.

(d)

Fig. 8. Incoming links

The shape of the matrix 𝑃𝑃, which is constituted by the 𝑟𝑟-codes that identify the packets
of the flows that arrive at a sink node in 𝑇𝑇, is:

𝑃𝑃 = �

𝑐𝑐(𝑝𝑝1)
𝑐𝑐(𝑝𝑝2)
⋮

𝑐𝑐(𝑝𝑝𝑟𝑟)

� = �

𝑏𝑏11 𝑏𝑏12 … 𝑏𝑏1𝑟𝑟
𝑏𝑏12 𝑏𝑏22 … 𝑏𝑏2𝑟𝑟
⋮
𝑏𝑏𝑟𝑟1

⋮
𝑏𝑏𝑟𝑟2

⋱
…

⋮
𝑏𝑏𝑟𝑟𝑟𝑟

�. (31)

For example, if 𝑟𝑟 = 3, this would indicate a maximum flow for a multicast session of 3
packets generated at the source node and reaching each sink node. The length of the packets is
indifferent; therefore, the codes are over the vector space 𝔽𝔽23. If it is assumed that a sink node
receives the packets tagged with mnemonics 𝐴𝐴,𝐴𝐴 + 𝐶𝐶 and 𝐵𝐵 + 𝐶𝐶 on its three links, then they
correspond to the following binary codes:

𝐴𝐴 = 001 = 𝑐𝑐(𝑝𝑝1)
𝐴𝐴 + 𝐶𝐶 = 101 = 𝑐𝑐(𝑝𝑝2)
𝐵𝐵 + 𝐶𝐶 = 110 = 𝑐𝑐(𝑝𝑝3)

The corresponding matrix 𝑃𝑃 = �
0 0 1
1 0 1
1 1 0

� and its determinant is 1.

7.2 Creation Rules of the System of Constraints

7.2.1 Constraints on Outgoing Link Flows
For each link 𝑒𝑒 of type 1 or 3, the variable names of the outgoing link flow (packet) codes are
defined according to the following rule: if 𝑒𝑒 is an outgoing link in 𝑆𝑆 ∪ 𝐾𝐾 and its 𝑜𝑜(𝑒𝑒) = 𝑠𝑠,
then the notation of the outgoing link flow variable is 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑒𝑒), and its computational size is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 701

𝑟𝑟-bits. The solutions for the outgoing flow 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑒𝑒) are classified according to:
(a) Simple packets: each 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑒𝑒) corresponds to an integer power of 2 from 1 to 2𝑟𝑟:

𝑓𝑓𝑠𝑠_𝑑𝑑(𝑒𝑒) = 1 ∨ 2 ∨ 4 ∨ …∨ 2𝑟𝑟, where ∨ is logical 𝑜𝑜𝑜𝑜 operator. (32)
(b) Combined packets: each 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑒𝑒) corresponds to an integer between 1 and 2𝑟𝑟:

𝑓𝑓𝑠𝑠_𝑑𝑑(𝑒𝑒) = [1, 2𝑟𝑟] ≠ 0. (33)

7.2.2 Constraints on incoming link flows
For each link 𝑙𝑙 of type 2 or 3, the variable names of the incoming link flow (packet) codes are
defined according to the following rule: if 𝑙𝑙 is a link in 𝐿𝐿 ∪ 𝐾𝐾 and its 𝑑𝑑(𝑙𝑙) = 𝑡𝑡, 𝑡𝑡 ∈ 𝑇𝑇, then the
notation of the incoming link flow code variable is 𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡, and its computational size is 𝑟𝑟-bits.

The constraints are set with the support of the Reduced Source-Sinks Hop matrix 𝑄𝑄𝑟𝑟, where
each 𝑄𝑄𝑟𝑟(𝑘𝑘, 𝑙𝑙) = 𝑗𝑗 indicates that there is a direct path with 𝑗𝑗 hops (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1 and 𝐹𝐹𝑛𝑛 = 0)
between the outgoing link 𝑘𝑘 and the incoming link 𝑙𝑙. 𝑄𝑄𝑟𝑟𝑇𝑇(𝑙𝑙) is the column corresponding to the
incoming link 𝑙𝑙 of the matrix 𝑄𝑄𝑟𝑟, and 𝑄𝑄𝑟𝑟𝑇𝑇(𝑙𝑙,𝑘𝑘) is the number of times that the flow coming
from the outgoing link 𝑘𝑘 (noted as 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑘𝑘)) will contribute to the linear combination built to
obtain the flow of the incoming link 𝑙𝑙 (noted as 𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡). For an incoming link 𝑙𝑙, the flow 𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡
is written as a linear combination of the following number of added components:

𝜂𝜂𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡 = � 𝑄𝑄𝑟𝑟𝑇𝑇(𝑙𝑙,𝑘𝑘).
𝑘𝑘∈𝑆𝑆∪𝐾𝐾

 (34)

From (28), the flow 𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡 , in the incoming link 𝑙𝑙 , is obtained through the following
expression and formed by the added outgoing flows 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑘𝑘),∀𝑘𝑘 ∈ 𝑆𝑆 ∪ 𝐾𝐾:

𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡 = � � 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑘𝑘)

𝑄𝑄𝑟𝑟𝑇𝑇(𝑙𝑙,𝑘𝑘)

𝑖𝑖=1

.
𝑘𝑘∈𝑆𝑆∪𝐾𝐾

 (35)

7.2.3 Constraints on incoming links and sink nodes
The constraints given in section 7.1.3 must be met.

(a) For each link 𝑙𝑙 of type 2 or 3 and considering (29), the flow must fulfill the expression:
𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡 ≠ 0,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑙𝑙 with 𝑑𝑑(𝑙𝑙) = 𝑡𝑡. (36)

(b) For the linear combination of the flows in the incoming links 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑟𝑟 to the sink
node 𝑡𝑡 and considering (30), the following expression must be satisfied:

�𝑓𝑓𝑜𝑜(𝑙𝑙𝑖𝑖)_𝑡𝑡 ≠ 0
𝑟𝑟

𝑖𝑖=1

,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑙𝑙𝑖𝑖 with 𝑑𝑑(𝑙𝑙𝑖𝑖) = 𝑡𝑡. (37)

(c) To establish the linear independence between the codes of flows (packets) arriving at a
sink node 𝑡𝑡 ∈ 𝑇𝑇, a matrix 𝑃𝑃𝑡𝑡 is constructed whose rows contain these codes. Each of the
𝑟𝑟-bits that make up a flow 𝑓𝑓𝑜𝑜(𝑙𝑙𝑖𝑖)_𝑡𝑡, will be denoted by 𝑓𝑓𝑜𝑜(𝑙𝑙𝑖𝑖)_𝑡𝑡

(𝑗𝑗) , where 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑟𝑟:

𝑃𝑃𝑡𝑡 =

⎣
⎢
⎢
⎡
𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡
𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡
⋮

𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡⎦
⎥
⎥
⎤

�����
𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

=

⎣
⎢
⎢
⎢
⎢
⎡𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡

(1) 𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡
(2) … 𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡

(𝑟𝑟)

𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡
(1) 𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡

(2) … 𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡
(𝑟𝑟)

⋮
𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡

(1)
⋮

𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡
(2)

⋱
…

⋮
𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡

(𝑟𝑟)
⎦
⎥
⎥
⎥
⎥
⎤

. (38)

The determinant of 𝑃𝑃𝑡𝑡 will be calculated by the method of minors and cofactors in the
following manner for sink node 𝑡𝑡:

𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡
(1) ∗ 𝑀𝑀11 + 𝑓𝑓𝑜𝑜(𝑙𝑙1)𝑡𝑡

(2) ∗ 𝑀𝑀12 + ⋯+ 𝑓𝑓𝑜𝑜(𝑙𝑙1)𝑡𝑡
(𝑟𝑟) ∗ 𝑀𝑀1𝑟𝑟 ≠ 0. (39)

702 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

This determinant must be a non-zero value to fulfill the linear independence, that is:

𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃𝑡𝑡) = �𝑓𝑓𝑜𝑜(𝑙𝑙1)𝑡𝑡
(𝑖𝑖)

𝑟𝑟

𝑖𝑖=1

∗ 𝑀𝑀1𝑟𝑟 ≠ 0,∀𝑡𝑡 ∈ 𝑇𝑇. (40)

In short, a system of constraints is achieved and if solved will determine the value of the
code that tags the packet emerging by each outgoing link that is born in the source node 𝑠𝑠.
Similarly, the values of the codes that tag the packets arriving at each sink node in 𝑇𝑇 will be
obtained. The system of constraints used to determine the solution to the multicast session of a
single source node 𝑠𝑠 and the set of sink nodes 𝑇𝑇 is summarized as:

𝑓𝑓𝑠𝑠_𝑑𝑑(𝑘𝑘) = 1 ∨ 2 ∨ 4 ∨ …∨ 2𝑟𝑟 or 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑘𝑘) = [1: 2𝑟𝑟] ≠ 0.

𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡 = � � 𝑓𝑓𝑠𝑠_𝑑𝑑(𝑘𝑘)

𝑄𝑄𝑟𝑟𝑇𝑇(𝑙𝑙,𝑘𝑘)

𝑖𝑖=1

.
𝑘𝑘∈𝑆𝑆∪𝐾𝐾

𝑓𝑓𝑜𝑜(𝑙𝑙)_𝑡𝑡 ≠ 0,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑙𝑙 with 𝑑𝑑(𝑙𝑙) = 𝑡𝑡.

�𝑓𝑓𝑜𝑜(𝑙𝑙𝑖𝑖)_𝑡𝑡 ≠ 0
𝑟𝑟

𝑖𝑖=1

,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑙𝑙𝑖𝑖 with 𝑑𝑑(𝑙𝑙𝑖𝑖) = 𝑡𝑡.

𝑃𝑃𝑡𝑡 =

⎣
⎢
⎢
⎡
𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡
𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡
⋮

𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡⎦
⎥
⎥
⎤

�����
𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

=

⎣
⎢
⎢
⎢
⎢
⎡𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡

(1) 𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡
(2) … 𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡

(𝑟𝑟)

𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡
(1) 𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡

(2) … 𝑓𝑓𝑜𝑜(𝑙𝑙2)_𝑡𝑡
(𝑟𝑟)

⋮
𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡

(1)
⋮

𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡
(2)

⋱
…

⋮
𝑓𝑓𝑜𝑜(𝑙𝑙𝑟𝑟)_𝑡𝑡

(𝑟𝑟)
⎦
⎥
⎥
⎥
⎥
⎤

.

det(𝑃𝑃𝑡𝑡) = �𝑓𝑓𝑜𝑜(𝑙𝑙1)_𝑡𝑡
(𝑖𝑖)

𝑟𝑟

𝑖𝑖=1

∗ 𝑀𝑀1𝑟𝑟 ≠ 0,∀𝑡𝑡 ∈ 𝑇𝑇.

8. Examples and Results
8.1 Example 1: Multicast session with nine nodes
8.1.1 System graphs and matrices
Fig. 9(a) shows the graph of a multicast session with nine nodes and with a source node
(𝑠𝑠 = 1), three sinks (𝑇𝑇 = {7,8,9}) and maximum flow of 𝑟𝑟 = 2 packets in 𝔽𝔽2𝑙𝑙 . With a
maximum flow of 2, the codes that will tag the packets are nonzero elements of the vector
space 𝔽𝔽22. In addition, there is a coding node (node 5) that is not relevant to the model’s
approach. Table 2 shows the links and their types. From this table, it is also inferred that the
sets of outgoing and incoming links are constituted by:
𝑆𝑆 = {(1,2), (1,3), (1,4)} and 𝐿𝐿 = {(2,7), (6,7), (3,9), (6,8), (4,8), (6,9)}.

Fig. 9(b) shows the DLLG for the multicast session with nine nodes. The longest path is
three hops, and so it can only be iterated to 𝑛𝑛 = 3 and with 𝑛𝑛 = 4, 𝐹𝐹4 = 0. After obtaining the
intermediate matrices, the Source-Sinks Hop matrix and the Reduced Source-Sinks Hop
matrix are deduced as shown in Table 3 and Table 4, respectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 703

Fig. 9(a) Multicast session for 𝐺𝐺 with nine nodes. (b) Directed Labeled Line Graph for 𝐺𝐺 with nine

nodes

Table 2. Links table
Index 1 2 3 4 5 6 7 8 9 10 11 12
Origin 1 1 1 2 2 3 3 4 5 6 6 6
Destination 2 3 4 5 7 5 9 8 6 7 8 9
Type 1 1 1 0 2 0 2 2 0 2 2 2

Table 3. Source-Sinks Hop Matrix 𝑄𝑄

Link

(1
,2

)

(1
,3

)

(1
,4

)

(2
,5

)

(2
,7

)

(3
,5

)

(3
,9

)

(4
,8

)

(5
,6

)

(6
,7

)

(6
,8

)

(6
,9

)
(1,2) 0 0 0 0 1 0 0 0 0 1 1 1
(1,3) 0 0 0 0 0 0 1 0 0 1 1 1
(1,4) 0 0 0 0 0 0 0 1 0 0 0 0

Table 4. Reduced Source-Sinks Hop Matrix 𝑄𝑄𝑟𝑟

Link (2,7) (3,9) (4,8) (6,7) (6,8) (6,9)
(1,2) 1 0 0 1 1 1
(1,3) 0 1 0 1 1 1
(1,4) 0 0 1 0 0 0

8.1.2 System constraints
According to the multicast session graph represented in Fig. 9, the following set of constraints
is derived from applying the model.

(a) Constraints on the outgoing link flows:
Case I: Flows with simple packets
𝑓𝑓1_2 = 1⋁2; 𝑓𝑓1_3 = 1⋁2; 𝑓𝑓1_4 = 1⋁2
Case II: Flows with combined packets
𝑓𝑓1_2 ≠ 0; 𝑓𝑓1_3 ≠ 0; 𝑓𝑓1_4 ≠ 0

(b) Constraints on the incoming link flows:
With the support of the Reduced Source-Sinks Hop matrix 𝑄𝑄𝑟𝑟, it is determined that:
𝑓𝑓2_7 = 𝑓𝑓1_2 ; 𝑓𝑓3_9 = 𝑓𝑓1_3 ; 𝑓𝑓4_8 = 𝑓𝑓1_4 ; 𝑓𝑓6_7 = 𝑓𝑓1_2 + 𝑓𝑓1_3 ; 𝑓𝑓6_8 = 𝑓𝑓1_2 + 𝑓𝑓1_3 ; 𝑓𝑓6_9 =
𝑓𝑓1_2 + 𝑓𝑓1_3

(c) Constraints on the incoming links and the sink nodes:
(1) Non-zero incoming flows:

𝑓𝑓2_7 ≠ 0; 𝑓𝑓3_9 ≠ 0; 𝑓𝑓4_8 ≠ 0; 𝑓𝑓6_7 ≠ 0; 𝑓𝑓6_8 ≠ 0; 𝑓𝑓6_9 ≠ 0
(2) Non-zero linear combination of incoming flows to a sink node:

704 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

𝑓𝑓2_7 + 𝑓𝑓6_7 ≠ 0
𝑓𝑓4_8 + 𝑓𝑓6_8 ≠ 0
𝑓𝑓3_9 + 𝑓𝑓6_9 ≠ 0

(3) Matrix of tags sized 𝑟𝑟 = 2:
The codes of this field are:

℘ = 𝔽𝔽22\{0} = {01,10,11}
Next, the code matrix and the independent linearity constraint between the
incoming flows for each sink node 𝑇𝑇 are shown in Table 5.

Table 5. Code Matrix and Independent Linearity Constraints
For 𝒕𝒕 = 𝟕𝟕 For 𝒕𝒕 = 𝟖𝟖 For 𝒕𝒕 = 𝟗𝟗

𝑃𝑃7 = �
𝑓𝑓2_7
1 𝑓𝑓2_7

2

𝑓𝑓6_7
1 𝑓𝑓6_7

2 � 𝑃𝑃8 = �
𝑓𝑓48
1 𝑓𝑓48

2

𝑓𝑓68
1 𝑓𝑓68

2 � 𝑃𝑃9 = �
𝑓𝑓3_9
1 𝑓𝑓3_9

2

𝑓𝑓6_9
1 𝑓𝑓6_9

2 �

𝑓𝑓2_7
1 ∗ 𝑓𝑓6_7

2 + 𝑓𝑓2_7
2 ∗ 𝑓𝑓6_7

1 ≠ 0 𝑓𝑓4_8
1 ∗ 𝑓𝑓6_8

2 + 𝑓𝑓4_8
2 ∗ 𝑓𝑓6_8

1 ≠ 0 𝑓𝑓3_9
1 ∗ 𝑓𝑓6_9

2 + 𝑓𝑓3_9
2 ∗ 𝑓𝑓6_9

1 ≠ 0

8.1.3 System Solution
When carrying this system to an equation solver (Z3[28] software, which is used as a theorem
tester and first-order logic solver), the following results are obtained for each flow value
(packet) in the outgoing links and each flow value (packet) in the incoming links:
Case I: Flows with simple packets:

Outgoing packet codes per outgoing link:
𝑓𝑓1_2 = 2 = 𝐵𝐵
𝑓𝑓1_3 = 1 = 𝐴𝐴
𝑓𝑓1_4 = 2 = 𝐵𝐵

The incoming packet codes per incoming link are shown in Table 6.

Table 6. Incoming Packet Codes per Incoming Link- Case I
For 𝒕𝒕 = 𝟕𝟕 For 𝒕𝒕 = 𝟖𝟖 For 𝒕𝒕 = 𝟗𝟗

𝑓𝑓2_7 = 2 = 𝐵𝐵
𝑓𝑓6_7 = 3 = 𝐴𝐴 + 𝐵𝐵

𝑓𝑓4_8 = 2 = 𝐵𝐵
𝑓𝑓6_8 = 3 = 𝐴𝐴 + 𝐵𝐵

𝑓𝑓3_9 = 1 = 𝐴𝐴
𝑓𝑓6_9 = 3 = 𝐴𝐴 + 𝐵𝐵

The multicast session graph with the solution is shown in Fig. 10(a).

Case II: Flows with combined packets:
Outgoing packet codes per outgoing link:

𝑓𝑓1_2 = 1 = 𝐴𝐴
𝑓𝑓1_3 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓1_4 = 3 = 𝐴𝐴 + 𝐵𝐵

The incoming packet codes per incoming link are shown in Table 7.

Table 7. Incoming Packet Codes per Incoming Link – Case II
For 𝒕𝒕 = 𝟕𝟕 For 𝒕𝒕 = 𝟖𝟖 For 𝒕𝒕 = 𝟗𝟗

𝑓𝑓2_7 = 1 = 𝐴𝐴
𝑓𝑓6_7 = 2 = 𝐵𝐵

𝑓𝑓4_8 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓6_8 = 2 = 𝐵𝐵

𝑓𝑓3_9 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓6_9 = 2 = 𝐵𝐵

The multicast session graph with the solution is shown in Fig. 10(b).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 705

Fig. 10. Solutions in graph 𝐺𝐺 with nine nodes.

8.2 Example 2: Multicast session with 18 nodes
8.2.1 System graphs and matrices
Fig. 11(a) shows the graph of a multicast session with 18 nodes and with a source node
(𝑠𝑠 = 1), three sinks (𝑇𝑇 = {18,19,20}) and maximum flow of 𝑟𝑟 = 4 packets in 𝔽𝔽2𝑙𝑙 . With a
maximum flow of 4, the codes that will tag the packets are nonzero elements of the vector
space 𝔽𝔽24. Also, there are coding nodes (nodes 8 and 12) that are not relevant to the model’s
approach. Table 8 shows the links and their types. From this table, it is also inferred that the
sets of outgoing and incoming links are constituted by:

𝑆𝑆 = {(1,2), (1,3), (1,4), (1,5), (1,6), (1,7)}

𝐿𝐿 = �(13,18), (14,18), (15,18), (16,18), (6,19), (14,19), (15,19), (16,19), (10,20),
(14,20), (15,20), (16,20) �

Fig. 11(b) shows the DLLG for the multicast session with 18 nodes. The longest path is

three hops, and so it can only be iterated to 𝑛𝑛 = 3 and with 𝑛𝑛 = 4, 𝐹𝐹4 = 0. After obtaining the
intermediate matrices, the Source-Sinks Hop matrix and the Reduced Source-Sinks Hop
matrix are deduced as shown in Table 9 and Table 10, respectively.

Fig. 11(a) Multicast session for 𝐺𝐺 with 18 nodes. (b) Directed Labeled Line Graph for G with 18 nodes.

706 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

Table 8. Links table
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Origin 1 1 1 1 1 1 2 3 4 4 5 6 6 7
Destination 2 3 4 5 6 7 8 8 10 13 11 12 19 12
Type 1 1 1 1 1 1 0 0 0 0 0 0 2 0

Index 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Origin 8 10 11 12 13 14 14 14 15 15 15 16 16 16
Destination 14 20 15 16 18 18 19 20 18 19 20 18 19 20
Type 0 2 0 0 2 2 2 2 2 2 2 2 2 2

8.2.2 System constraints
According to the multicast session graph represented in Fig. 11, the following set of
constraints is derived from applying the model.

(a) Constraints on the outgoing link flows:
Case I: Flows with simple packets

Case II: Flows with combined packets

(b) Constraints on the incoming link flows:
With the support of the Reduced Source-Sinks Hop matrix 𝑄𝑄𝑟𝑟, it is determined that:
𝑓𝑓13_18 = 𝑓𝑓1_4; 𝑓𝑓14_18 = 𝑓𝑓1_2 + 𝑓𝑓1_3; 𝑓𝑓15_18 = 𝑓𝑓1_5; 𝑓𝑓16_18 = 𝑓𝑓1_6 + 𝑓𝑓1_7; 𝑓𝑓6_19 = 𝑓𝑓1_6;
𝑓𝑓14_19 = 𝑓𝑓1_2 + 𝑓𝑓1_3; 𝑓𝑓15_19 = 𝑓𝑓1_5; 𝑓𝑓16_19 = 𝑓𝑓1_6 + 𝑓𝑓1_7; 𝑓𝑓10_20 = 𝑓𝑓1_4; 𝑓𝑓14_20 = 𝑓𝑓1_2 + 𝑓𝑓1_3;
𝑓𝑓15_20 = 𝑓𝑓1_5; 𝑓𝑓16_20 = 𝑓𝑓1_6 + 𝑓𝑓1_7

Table 9. Source-Sinks Hop Matrix 𝑄𝑄

L
in

k

(1
,2

)
(1

,3
)

(1
,4

)
(1

,5
)

(1
,6

)
(1

,7
)

(2
,8

)
(3

,8
)

(4
,1

0)

(4
,1

3)

(5
,1

1)

(6
,1

2)

(6
,1

9)

(7
,1

2)

(8
,1

4)

(1
0,

20
)

(1
1,

15
)

(1
2,

16
)

(1
3,

18
)

(1
4,

18
)

(1
4,

19
)

(1
4,

20
)

(1
5,

18
)

(1
5,

19
)

(1
5,

20
)

(1
6,

18
)

(1
6,

19
)

(1
6,

20
)

(1
,2

)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

(1
,3

)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

(1
,4

)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

(1
,5

)

0 1 1 1 0 0 0

(1
,6

)

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

(1
,7

)

0 1 1 1

Table 10. Reduced Source-Sinks Hop Matrix 𝑄𝑄𝑟𝑟

Link

(6
,1

9)

(1
0,

20
)

(1
3,

18
)

(1
4,

18
)

(1
4,

19
)

(1
4,

20
)

(1
5,

18
)

(1
5,

19
)

(1
5,

20
)

(1
6,

18
)

(1
6,

19
)

(1
6,

20
)

(1,2) 0 0 0 1 1 1 0 0 0 0 0 0
(1,3) 0 0 0 1 1 1 0 0 0 0 0 0
(1,4) 0 1 1 0 0 0 0 0 0 0 0 0
(1,5) 0 0 0 0 0 0 1 1 1 0 0 0
(1,6) 1 0 0 0 0 0 0 0 0 1 1 1
(1,7) 0 0 0 0 0 0 0 0 0 1 1 1

𝑓𝑓1_2 = 1⋁2⋁4⋁8; 𝑓𝑓1_3 = 1⋁2⋁4⋁8; 𝑓𝑓1_4 = 1⋁2⋁4⋁8;
𝑓𝑓1_5 = 1⋁2⋁4⋁8; 𝑓𝑓1_6 = 1⋁2⋁4⋁8; 𝑓𝑓1_7 = 1⋁2⋁4⋁8

𝑓𝑓1_2 ≠ 0; 𝑓𝑓1_3 ≠ 0; 𝑓𝑓1_4 ≠ 0; 𝑓𝑓1_5 ≠ 0; 𝑓𝑓1_6 ≠ 0; 𝑓𝑓1_7 ≠ 0

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 707

(c) Constraints on the incoming links and the sink nodes:

(1) Non-zero incoming flows:
𝑓𝑓13_18 ≠ 0; 𝑓𝑓14_18 ≠ 0; 𝑓𝑓15_18 ≠ 0; 𝑓𝑓16_18 ≠ 0; 𝑓𝑓6_19 ≠ 0; 𝑓𝑓14_19 ≠ 0; 𝑓𝑓15_19 ≠ 0;
𝑓𝑓16_19 ≠ 0; 𝑓𝑓10_20 ≠ 0; 𝑓𝑓14_20 ≠ 0; 𝑓𝑓15_20 ≠ 0; 𝑓𝑓16_20 ≠ 0

(2) Non-zero linear combination of incoming flows to a sink node:
𝑓𝑓13_18 + 𝑓𝑓14_18 + 𝑓𝑓15_18 + 𝑓𝑓16_18 ≠ 0
𝑓𝑓6_19 + 𝑓𝑓14_19 + 𝑓𝑓15_19 + 𝑓𝑓16_19 ≠ 0
𝑓𝑓10_20 + 𝑓𝑓14_20 + 𝑓𝑓15_20 + 𝑓𝑓16_20 ≠ 0

(3) Matrix of tags sized 𝑟𝑟 = 4:
The codes of this field are:
℘ = 𝔽𝔽24\{0} = {0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011,1100,1101,1110,1111}

Next, the code matrix and the independent linearity constraint between the
incoming flows for each sink node 𝑇𝑇 are shown in Table 11.

Table 11. Code Matrix and Independent Linearity Constraints
For 𝒕𝒕 = 𝟏𝟏𝟏𝟏 For 𝒕𝒕 = 𝟏𝟏𝟏𝟏 For 𝒕𝒕 = 𝟐𝟐𝟐𝟐

𝑃𝑃18 =

⎣
⎢
⎢
⎢
⎡𝑓𝑓13_18

1 𝑓𝑓13_18
2 𝑓𝑓13_18

3 𝑓𝑓13_18
4

𝑓𝑓14_18
1

𝑓𝑓15_18
1

𝑓𝑓16_18
1

𝑓𝑓14_18
2

𝑓𝑓15_18
2

𝑓𝑓16_18
2

𝑓𝑓14_18
3

𝑓𝑓15_18
3

𝑓𝑓16_18
3

𝑓𝑓14_18
4

𝑓𝑓15_18
4

𝑓𝑓16_18
4 ⎦

⎥
⎥
⎥
⎤
 𝑃𝑃19 =

⎣
⎢
⎢
⎢
⎡ 𝑓𝑓6_19

1 𝑓𝑓6_19
2 𝑓𝑓6_19

3 𝑓𝑓6_19
4

𝑓𝑓14_19
1

𝑓𝑓15_19
1

𝑓𝑓16_19
1

𝑓𝑓14_19
2

𝑓𝑓15_19
2

𝑓𝑓16_19
2

𝑓𝑓14_19
3

𝑓𝑓15_19
3

𝑓𝑓16_19
3

𝑓𝑓14_19
4

𝑓𝑓15_19
4

𝑓𝑓16_19
4 ⎦

⎥
⎥
⎥
⎤
 𝑃𝑃20 =

⎣
⎢
⎢
⎢
⎡𝑓𝑓10_20

1 𝑓𝑓10_20
2 𝑓𝑓10_20

3 𝑓𝑓10_20
4

𝑓𝑓14_20
1

𝑓𝑓15_20
1

𝑓𝑓16_20
1

𝑓𝑓14_20
2

𝑓𝑓15_20
2

𝑓𝑓16_20
2

𝑓𝑓14_20
3

𝑓𝑓15_20
3

𝑓𝑓16_20
3

𝑓𝑓14_20
4

𝑓𝑓15_20
4

𝑓𝑓16_20
4 ⎦

⎥
⎥
⎥
⎤

det (𝑃𝑃18) ≠ 0 det (𝑃𝑃19) ≠ 0 det (𝑃𝑃20) ≠ 0

8.2.3 System Solution
The following results are obtained for each flow value (packet) in the outgoing and incoming
links:
Case I: Flows with simple packets:

Outgoing packet codes per outgoing link:
𝑓𝑓1_2 = 1 = 𝐴𝐴 𝑓𝑓1_4 = 1 = 𝐴𝐴 𝑓𝑓1_6 = 2 = 𝐵𝐵
𝑓𝑓1_3 = 8 = 𝐷𝐷 𝑓𝑓1_5 = 4 = 𝐶𝐶 𝑓𝑓1_7 = 1 = 𝐴𝐴

The incoming packet codes per incoming link are shown in Table 12.

Table 12. Incoming Packet Codes per Incoming Link- Case I
For 𝒕𝒕 = 𝟏𝟏𝟏𝟏 For 𝒕𝒕 = 𝟏𝟏𝟏𝟏 For 𝒕𝒕 = 𝟐𝟐𝟐𝟐

𝑓𝑓13_18 = 1 = 𝐴𝐴
𝑓𝑓14_18 = 9 = 𝐴𝐴 + 𝐷𝐷
𝑓𝑓15_18 = 4 = 𝐶𝐶
𝑓𝑓16_18 = 3 = 𝐴𝐴 + 𝐵𝐵

𝑓𝑓6_19 = 2 = 𝐵𝐵
𝑓𝑓14_19 = 9 = 𝐴𝐴 + 𝐷𝐷
𝑓𝑓15_19 = 4 = 𝐶𝐶
𝑓𝑓16_19 = 3 = 𝐴𝐴 + 𝐵𝐵

𝑓𝑓10_20 = 1 = 𝐴𝐴
𝑓𝑓14_20 = 9 = 𝐴𝐴 + 𝐷𝐷
𝑓𝑓15_20 = 4 = 𝐶𝐶
𝑓𝑓16_20 = 3 = 𝐴𝐴 + 𝐵𝐵

The multicast session graph with the solution is shown in Fig. 12(a).

Case II: Flows with combined packets:
Outgoing packet codes per outgoing link:

𝑓𝑓1_2 = 7 = 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 𝑓𝑓1_4 = 3 = 𝐴𝐴 + 𝐵𝐵 𝑓𝑓1_6 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓1_3 = 1 = 𝐴𝐴 𝑓𝑓1_5 = 12 = 𝐶𝐶 + 𝐷𝐷 𝑓𝑓1_7 = 11 = 𝐴𝐴 + 𝐵𝐵 + 𝐷𝐷

The incoming packet codes per incoming link are shown in Table 13.

Table 13. Incoming Packet Codes per Incoming Link – Case II
For 𝒕𝒕 = 𝟏𝟏𝟏𝟏 For 𝒕𝒕 = 𝟏𝟏𝟏𝟏 For 𝒕𝒕 = 𝟐𝟐𝟐𝟐

𝑓𝑓13_18 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓14_18 = 6 = 𝐵𝐵 + 𝐶𝐶

 𝑓𝑓15_18 = 12 = 𝐶𝐶 + 𝐷𝐷
 𝑓𝑓16_18 = 8 = 𝐷𝐷

𝑓𝑓6_19 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓14_19 = 6 = 𝐵𝐵 + 𝐶𝐶
𝑓𝑓15_19 = 12 = 𝐶𝐶 + 𝐷𝐷
𝑓𝑓16_19 = 8 = 𝐷𝐷

𝑓𝑓10_20 = 3 = 𝐴𝐴 + 𝐵𝐵
𝑓𝑓14_20 = 6 = 𝐵𝐵 + 𝐶𝐶
𝑓𝑓15_20 = 12 = 𝐶𝐶 + 𝐷𝐷
𝑓𝑓16_20 = 8 = 𝐷𝐷

708 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

The multicast session graph with the solution is shown in Fig. 12(b).

Fig. 12. The solutions in graph 𝐺𝐺 with 18 nodes.

5. Conclusion
Finding a solution to the multicast NC problem is one of the challenges addressed in several
previous studies [2] [3] [16]. Also, the problem of multicast routing with NC has been
addressed in [18] [19] [22] [23]. However, in these studies (especially the first one), the size of
the field is associated with the solution, which is limited by the number of sinks that comprise
the multicast network.

To make the field size independent of the number of sinks, this work proposes finding a
multicast solution based on the order to distribute 𝑟𝑟-packets, which constitute the maximum
flow of the multicast session between the outgoing links from the source node and guarantees
the delivery of the 𝑟𝑟-packets to each of the sink nodes.

A code is defined to tag each packet within the network, which is within the range
[1, 2𝑟𝑟 − 1]. The original or so-called simple packets within this study are tagged with the
vectors 𝑢𝑢𝑖𝑖 in sequential order or with a defined mnemonic on an alphabet Σ. When packet
coding is executed, it is also carrying out the linear combination of vectors 𝑢𝑢𝑖𝑖 using coding
coefficients with a value of 1 defined in 𝔽𝔽2 or with the representation of the mnemonics of the
alphabet using the xor (+) operator.

From the matrix representation of the multicast session graph, the Reduced Source-Sink
Hop matrix is constructed where each non-zero position indicates the number of times the
outgoing link flow contributes at the incoming link to the constitution of a linear combination,
which will enter the sink node at the end of this link.

A system of constraints is established that allows solutions with either simple packet
ordering in outgoing links or the use of combined packets. These constraints are constructed
from the Reduced Source-Sink Hop matrix and consider the linear independence conditions at
the sink nodes to assume the resolution of the system. When the conditions of linear
independence are not met, the method will generate systems without solutions.

A method is currently being developed to obtain all of the possible valid solutions for each
case exposed. It is also expected that a proposal for multisource multicast (multicast
multisession) systems, similar to this one, will be obtained. Furthermore, we are in the process
of simulating a multicast session system that will allow us to observe its behavior beginning
from the packets in the source node and include ordering in the outgoing links.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 709

References
[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, "Network information flow," IEEE Trans. Inf.

Theory, Vol. 46, No. 4, pp. 1204-1216, 2000. Article (CrossRef Link)
[2] R. Koetter and M. Médard, "An algebraic approach to network coding," IEEE ACM Trans. Netw.

TON, Vol. 11, No. 5, pp. 782-795, 2003. Article (CrossRef Link)
[3] S.-Y. R. Li, R. W. Yeung, and N. Cai, "Linear network coding," Inf. Theory IEEE Trans., Vol. 49,

No. 2, pp. 371-381, 2003. Article (CrossRef Link)
[4] P. A. Chou and Y. Wu, "Network coding for the internet and wireless networks," IEEE Signal

Process. Mag., Vol. 24, No. 5, pp. 77-85, 2007. Article (CrossRef Link)
[5] B. Li and Y. Wu, "Network coding [scanning the issue]," Proc. IEEE, Vol. 99, No. 3, pp. 363-365,

2011. Article (CrossRef Link)
[6] A. Sprintson, "Network coding and its applications in communication networks," Algorithms for

Next Generation Networks, Springer, pp. 343-372, 2010. Article (CrossRef Link)
[7] R. W. Yeung and N. Cai, Network coding theory. Now Publishers Inc, 2006.

Article (CrossRef Link)
[8] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, "Network coding: an instant primer," ACM

SIGCOMM Comput. Commun. Rev., Vol. 36, No. 1, pp. 63-68, 2006. Article (CrossRef Link)
[9] R. W. Yeung, "Network coding: A historical perspective," Proc. IEEE, Vol. 99, No. 3, pp.

366-371, 2011. Article (CrossRef Link)
[10] P. Elias, A. Feinstein, and C. Shannon, "A note on the maximum flow through a network," IRE

Trans. Inf. Theory, Vol. 2, No. 4, pp. 117-119, 1956. Article (CrossRef Link)
[11] L. R. Ford and D. R. Fulkerson, "Maximal flow through a network," Classic papers in

combinatorics, pp. 243-248, 1987. Article (CrossRef Link)
[12] G. Dantzig and D. R. Fulkerson, "On the max flow min cut theorem of networks," Linear

Inequalities Relat. Syst., Vol. 38, pp. 225-231, 2003. Article (CrossRef Link)
[13] R. Lidl and H. Niederreiter, Finite fields, vol. 20. Cambridge university press, 1997.
[14] R. Koetter and M. Médard, "Beyond routing: An algebraic approach to network coding," in Proc.

of INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, Vol. 1, pp. 122-130, 2002.
Article (CrossRef Link)

[15] S. Jaggi, P. A. Chou, and K. Jain, "Low complexity optimal algebraic multicast codes," in Proc. of
IEEE Int'l Symp. Information Theory, Yokohama, Japan, 2003. Article (CrossRef Link)

[16] S. Jaggi et al., "Polynomial time algorithms for multicast network code construction," Inf. Theory
IEEE Trans, Vol. 51, No. 6, pp. 1973-1982, 2005. Article (CrossRef Link)

[17] P. Sanders, S. Egner, and L. Tolhuizen, "Polynomial time algorithms for network information
flow," in Proc. of the fifteenth annual ACM symposium on Parallel algorithms and architectures,
pp. 286-294, 2003. Article (CrossRef Link)

[18] Y. Zhu, B. Li, and J. Guo, "Multicast with network coding in application-layer overlay networks,"
IEEE J. Sel. Areas Commun., Vol. 22, No. 1, pp. 107-120, 2004. Article (CrossRef Link)

[19] T. Shaoguo, H. Jiaqing, Y. Zongkai, R. S. Youail, and C. Wenqing, "Routing algorithm for
network coding based multicast," in Proc. of Convergence Information Technology International
Conference, pp. 2091-2095, 2007. Article (CrossRef Link)

[20] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, "Network flows: theory, algorithms, and
applications," 1993.

[21] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[22] L. Wu and K. Curran, "A practical network coding and routing scheme based on maximum flow

combination,” Int. J. Netw. Manag., Vol. 22, No. 5, pp. 373-396, 2012. Article (CrossRef Link)

https://doi.org/10.1109/18.850663
https://doi.org/10.1109/TNET.2003.818197
https://doi.org/10.1109/TIT.2002.807285
https://doi.org/10.1109/MSP.2007.904818
https://doi.org/10.1109/JPROC.2010.2096251
https://doi.org/10.1007/978-1-84882-765-3_15
https://doi.org/10.1561/0100000007
https://doi.org/10.1145/1111322.1111337
https://doi.org/10.1109/JPROC.2010.2094591
https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.1007/978-0-8176-4842-8_15
https://doi.org/10.1016/j.jctb.2010.08.002
https://doi.org/10.1109/TIT.2005.847712
https://doi.org/10.1145/777412.777464
https://doi.org/10.1109/JSAC.2003.818801
https://doi.org/10.1109/ICCIT.2007.213
https://doi.org/10.1002/nem.1797

710 Márquez et al.: Packet Output and Input Configuration in a Multicasting Session Using Network Coding

[23] D. Tang, X. Lu, y J. Li, "Multicast routing algorithm based on network coding," in Proc. of
International Conference on Brain Inspired Cognitive Systems, pp. 348-357, 2013.
Article (CrossRef Link)

[24] T. Ho and D. Lun, Network coding: an introduction. Cambridge University Press, 2008.
Article (CrossRef Link)

[25] K. Menger, "Zur allgemeinen Kurventheorie," Fundam. Math., Vol. 10, No. 1, pp. 96-115, 1927.
Article (CrossRef Link)

[26] S. I. Grossman, Elementary linear algebra. Brooks/Cole Publishing Company, 1994
[27] R. J. Wilson, An introduction to graph theory. Pearson Education India, 1970.
[28] "GitHub - Z3Prover/z3: The Z3 Theorem Prover," https://github.com/Z3Prover/z3
[29] S. Knight et al., "Virtual router redundancy protocol," 1998. https://tools.ietf.org/html/rfc2338

José Márquez Díaz received a MSc degree in Computer Science from ITESM-México in
agreement with Universidad Autónoma de Bucaramanga and a BSc degree in Computer
Science from Universidad del Norte, Barranquilla, Colombia. He has been a Full Professor
since 1995 in the System and Computer Engineering Department at the Universidad del Norte.
His main research is focused on the Quality of Service (QoS) in Computer Networks, AdHoc
Networks, and Network Coding in Multicasting.

Ismael Gutiérrez García received a Ph.D. degree in Mathematics from Johannes
Gutenberg University Mainz, Germany. He has been a Full Professor since 1995 in the Math
Department at the Universidad del Norte. His current research interests are finite soluble
groups, Discrete Mathematics, and their applications.

Sebastian Valle Herrera, is a Software Engineering student in the 10th semester from
Universidad del Norte, Barranquilla, Colombia. His fields of interest include software
security and network optimization.

Melanis Falco Pastrana, is a System Engineering student in the 10th semester from
Universidad del Norte, Barranquilla, Colombia. She is especially interested in research in the
networking technology area and security fields.

https://doi.org/10.1007/978-3-642-38786-9_39
https://doi.org/10.1017/CBO9780511754623
https://doi.org/10.4064/fm-10-1-96-115
https://github.com/Z3Prover/z3
https://tools.ietf.org/html/rfc2338

