DOI QR코드

DOI QR Code

Korean Red Ginseng enhances pneumococcal △pep27 vaccine efficacy by inhibiting reactive oxygen species production

  • Received : 2017.09.01
  • Accepted : 2017.11.22
  • Published : 2019.04.15

Abstract

Background: Streptococcus pneumoniae, more than 90 serotypes of which exist, is recognized as an etiologic agent of pneumonia, meningitis, and sepsis associated with significant morbidity and mortality worldwide. Immunization with a pneumococcal pep27 mutant (${{\Delta}}pep27$) has been shown to confer comprehensive, long-term protection against even nontypeable strains. However, ${{\Delta}}pep27$ is effective as a vaccine only after at least three rounds of immunization. Therefore, treatments capable of enhancing the efficiency of ${{\Delta}}pep27$ immunization should be identified without delay. Panax ginseng Mayer has already been shown to have pharmacological and antioxidant effects. Here, the ability of Korean Red Ginseng (KRG) to enhance the efficacy of ${{\Delta}}pep27$ immunization was investigated. Methods: Mice were treated with KRG and immunized with ${{\Delta}}pep27$ before infection with the pathogenic S. pneumoniae strain D39. Total reactive oxygen species production was measured using lung homogenates, and inducible nitric oxide (NO) synthase and antiapoptotic protein expression was determined by immunoblotting. The phagocytic activity of peritoneal macrophages was also tested after KRG treatment. Results: Compared with the other treatments, KRG significantly increased survival rate after lethal challenge and resulted in faster bacterial clearance via increased phagocytosis. Moreover, KRG enhanced ${{\Delta}}pep27$ vaccine efficacy by inhibiting reactive oxygen species production, reducing extracellular signal-regulated kinase apoptosis signaling and inflammation. Conclusion: Taken together, our results suggest that KRG reduces the time required for immunization with the ${{\Delta}}pep27$ vaccine by enhancing its efficacy.

Keywords

References

  1. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004;4(3):144-54. https://doi.org/10.1016/S1473-3099(04)00938-7
  2. Organization, W.H.O. Pneumonia. 2015.
  3. Martner A, Dahlgren C, Paton JC, Wold AE. Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils. Infect Immun 2008;76(9):4079-87. https://doi.org/10.1128/IAI.01747-07
  4. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014;20(7):1126-67. https://doi.org/10.1089/ars.2012.5149
  5. Saura M, Zaragoza C, Bao C, McMillan A, Lowenstein CJ. Interaction of interferon regulatory factor-1 and nuclear factor kappaB during activation of inducible nitric oxide synthase transcription. J Mol Biol 1999;289(3):459-71. https://doi.org/10.1006/jmbi.1999.2752
  6. Teng X, Zhang H, Snead C, Catravas JD. Molecular mechanisms of iNOS induction by IL-1 beta and IFN-gamma in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 2002;282(1):C144-52. https://doi.org/10.1152/ajpcell.2002.282.1.C144
  7. Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001;20(2):147-55. https://doi.org/10.1038/sj.onc.1204062
  8. Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 2002;277(15):12710-7. https://doi.org/10.1074/jbc.M111598200
  9. Dong J, Ramachandiran S, Tikoo K, Jia Z, Lau SS, Monks TJ. EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Am J Physiol Renal Physiol 2004;287(5):F1049-58. https://doi.org/10.1152/ajprenal.00132.2004
  10. Ramachandiran S, Huang Q, Dong J, Lau SS, Monks TJ. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem Res Toxicol 2002;15(12):1635-42. https://doi.org/10.1021/tx0200663
  11. Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000;275(50):39435-43. https://doi.org/10.1074/jbc.M004583200
  12. Zhuang S, Yan Y, Daubert RA, Han J, Schnellmann RG. ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am J Physiol Renal Physiol 2007;292(1):F440-7. https://doi.org/10.1152/ajprenal.00170.2006
  13. Nam Ki Y. Clinical applications and efficacy of Korean ginseng. Journal of Ginseng Research 2002;26(3):111-31. https://doi.org/10.5142/JGR.2002.26.3.111
  14. Lopez MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME. Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta 2007;1770(9):1308-16. https://doi.org/10.1016/j.bbagen.2007.06.008
  15. Nguyen CT, Luong TT, Lee SY, Kim GL, Kwon H, Lee HG, Park CK, Rhee DK. Panax ginseng aqueous extract prevents pneumococcal sepsis in vivo by potentiating cell survival and diminishing inflammation. Phytomedicine 2015;22(11):1055-61. https://doi.org/10.1016/j.phymed.2015.07.005
  16. Yoo DG, Kim MC, Park MK, Park KM, Quan FS, Song JM, Wee JJ, Wang BZ, Cho YK, Compans RW, et al. Protective effect of ginseng polysaccharides on influenza viral infection. PloS One 2012;7(3):e33678. https://doi.org/10.1371/journal.pone.0033678
  17. Bogaert D, Hermans PW, Adrian PV, Rumke HC, de Groot R. Pneumococcal vaccines: an update on current strategies. Vaccine 2004;22(17-18):2209-20. https://doi.org/10.1016/j.vaccine.2003.11.038
  18. Oosterhuis-Kafeja F, Beutels P, Van Damme P. Immunogenicity, efficacy, safety and effectiveness of pneumococcal conjugate vaccines (1998-2006). Vaccine 2007;25(12):2194-212. https://doi.org/10.1016/j.vaccine.2006.11.032
  19. Koul PA. Vaccination in the prevention of community-acquired pneumonia in adults. Journal of The Association of Physicians of India 2016;64(12):22-7.
  20. Sniadack DH, Schwartz B, Lipman H, Bogaerts J, Butler JC, Dagan R, Echaniz-Aviles G, Lloyd-Evans N, Fenoll A, Girgis NI, et al. Potential interventions for the prevention of childhood pneumonia: geographic and temporal differences in serotype and serogroup distribution of sterile site pneumococcal isolates from childreneimplications for vaccine strategies. Pediatr Infect Dis J 1995;14(6):503-10. https://doi.org/10.1097/00006454-199506000-00007
  21. Briles DE, Hollingshead SK, Nabors GS, Paton JC, Brooks-Walter A. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine 2000;19(Suppl 1):S87-95. https://doi.org/10.1016/S0264-410X(00)00285-1
  22. Roche AM, King SJ, Weiser JN. Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice. Infect Immun 2007;75(5):2469-75. https://doi.org/10.1128/IAI.01972-06
  23. Wu K, Yao R, Wang H, Pang D, Liu Y, Xu H, Zhang S, Zhang X, Yin Y. Mucosal and systemic immunization with a novel attenuated pneumococcal vaccine candidate confer serotype independent protection against Streptococcus pneumoniae in mice. Vaccine 2014;32(33):4179-88. https://doi.org/10.1016/j.vaccine.2014.05.019
  24. Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006;58(1):68-89. https://doi.org/10.1016/j.addr.2005.12.003
  25. Hvalbye BK, Aaberge IS, Lovik M, Haneberg B. Intranasal immunization with heat-inactivated Streptococcus pneumoniae protects mice against systemic pneumococcal infection. Infect Immun 1999;67(9):4320-5. https://doi.org/10.1128/IAI.67.9.4320-4325.1999
  26. Malley R, Anderson PW. Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc Natl Acad Sci U S A 2012;109(10):3623-7. https://doi.org/10.1073/pnas.1121383109
  27. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 2004;350(9):896-903. https://doi.org/10.1056/NEJMoa030595
  28. Kim EH, Choi SY, Kwon MK, Tran TD, Park SS, Lee KJ, Bae SM, Briles DE, Rhee DK. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 2012;30(11):2008-19. https://doi.org/10.1016/j.vaccine.2011.11.073
  29. Kim GL, Choi SY, Seon SH, Lee S, Park SS, Song JY, Briles DE, Rhee DK. Pneumococcal pep27 mutant immunization stimulates cytokine secretion and confers long-term immunity with a wide range of protection, including against non-typeable strains. Vaccine 2016;34(51):6481-92. https://doi.org/10.1016/j.vaccine.2016.10.071
  30. Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types : induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Iii. J Exp Med 1944;79(2):137-58. https://doi.org/10.1084/jem.79.2.137
  31. Choi SY, Tran TD, Briles DE, Rhee DK. Inactivated pep27 mutant as an effective mucosal vaccine against a secondary lethal pneumococcal challenge in mice. Clin Exp Vaccine Res 2013;2(1):58-65. https://doi.org/10.7774/cevr.2013.2.1.58
  32. Kim EH, Kim IH, Lee MJ, Thach Nguyen C, Ha JA, Lee SC, Choi S, Choi KT, Pyo S, Rhee DK. Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) beta up-regulation. J Ethnopharmacol 2013;148(2): 474-85. https://doi.org/10.1016/j.jep.2013.04.041
  33. Miyaji EN, Dias WO, Gamberini M, Gebara VC, Schenkman RP, Wild J, Riedl P, Reimann J, Schirmbeck R, Leite LC. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellular immune responses against Streptococcus pneumoniae. Vaccine 2001;20(5-6):805-12. https://doi.org/10.1016/S0264-410X(01)00395-4
  34. Kim HN, Gil CH, Kim YR, Shin HK, Choi BT. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice. Sci Rep 2016;6:31169. https://doi.org/10.1038/srep31169
  35. Cooper NR, Nemerow GR. The role of antibody and complement in the control of viral infections. J Invest Dermatol 1984;83(1 Suppl):121s-7s. https://doi.org/10.1038/jid.1984.33
  36. Blanchard-Rohner G, Pollard AJ. Long-term protection after immunization with protein-polysaccharide conjugate vaccines in infancy. Expert Rev Vaccines 2011;10(5):673-84. https://doi.org/10.1586/erv.11.14
  37. Fedson DS, Scott JA. The burden of pneumococcal disease among adults in developed and developing countries: what is and is not known. Vaccine 1999;17(Suppl 1):S11-8. https://doi.org/10.1016/S0264-410X(99)00122-X
  38. Song JY, Nahm MH, Moseley MA. Clinical implications of pneumococcal serotypes: invasive disease potential, clinical presentations, and antibiotic resistance. J Korean Med Sci 2013;28(1):4-15. https://doi.org/10.3346/jkms.2013.28.1.4
  39. Cutts FT, Zaman SM, Enwere G, Jaffar S, Levine OS, Okoko JB, Oluwalana C, Vaughan A, Obaro SK, Leach A, et al. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet 2005;365(9465):1139-46. https://doi.org/10.1016/S0140-6736(05)71876-6
  40. Moffitt KL, Yadav P, Weinberger DM, Anderson PW, Malley R. Broad antibody and T cell reactivity induced by a pneumococcal whole-cell vaccine. Vaccine 2012;30(29):4316-22. https://doi.org/10.1016/j.vaccine.2012.01.034
  41. Hogenesch H, Dunham A, Hansen B, Anderson K, Maisonneuve JF, Hem SL. Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response. J Immune Based Ther Vaccines 2011;9:5. https://doi.org/10.1186/1476-8518-9-5
  42. Cho SO, Lim JW, Kim H. Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. J Ethnopharmacol 2013;150(2):761-4. https://doi.org/10.1016/j.jep.2013.09.013
  43. Song Z, Johansen HK, Faber V, Moser C, Kharazmi A, Rygaard J, Hoiby N. Ginseng treatment reduces bacterial load and lung pathology in chronic Pseudomonas aeruginosa pneumonia in rats. Antimicrob Agents Chemother 1997;41(5):961-4. https://doi.org/10.1128/AAC.41.5.961
  44. Lee JO, Ryu SH, Lee YS, Kim JI, Moon GS. Protective effect of dietary buchu (Allium tuberosum Rottler) on oxidative stress and lipofuscin formation in streptozotocin e induced diabetic rats. J Korean Soc Food Sci Nutr 2003;32(8): 1337-43. https://doi.org/10.3746/jkfn.2003.32.8.1337
  45. Taylor NL, Millar AH. Oxidative stress and plant mitochondria. Methods Mol Biol 2007;372:389-403. https://doi.org/10.1007/978-1-59745-365-3_28
  46. Wolfmeier H, Radecke J, Schoenauer R, Koeffel R, Babiychuk VS, Drucker P, Hathaway LJ, Mitchell TJ, Zuber B, Draeger A, et al. Active release of pneumolysin prepores and pores by mammalian cells undergoing a Streptococcus pneumoniae attack. Biochim Biophys Acta 2016;1860(11 Pt A):2498-509. https://doi.org/10.1016/j.bbagen.2016.07.022
  47. Okamoto T, Khan S, Oyama K, Fujii S, Sawa T, Akaike T. A new paradigm for antimicrobial host defense mediated by a nitrated cyclic nucleotide. J Clin Biochem Nutr 2010;46(1):14-9. https://doi.org/10.3164/jcbn.SR09-70
  48. Chen M, Bao W, Aizman R, Huang P, Aspevall O, Gustafsson LE, Ceccatelli S, Celsi G. Activation of extracellular signal-regulated kinase mediates apoptosis induced by uropathogenic Escherichia coli toxins via nitric oxide synthase: protective role of heme oxygenase-1. J Infect Dis 2004;190(1):127-35. https://doi.org/10.1086/421243
  49. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J 2010;277(1):2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
  50. Tan BJ, Chiu GN. Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int J Oncol 2013;42(5): 1605-12. https://doi.org/10.3892/ijo.2013.1843

Cited by

  1. Pharmacological effects of ginseng on infectious diseases vol.27, pp.5, 2019, https://doi.org/10.1007/s10787-019-00630-4
  2. Archidendron lucidum Exerts Anti-Inflammatory Effects by Targeting PDK1 in the NF- $ \kappa $ B Pathway vol.48, pp.2, 2019, https://doi.org/10.1142/s0192415x20500226
  3. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections vol.26, pp.13, 2019, https://doi.org/10.3390/molecules26134095
  4. Corona-Cov-2 (COVID-19) and ginseng: Comparison of possible use in COVID-19 and influenza vol.45, pp.4, 2019, https://doi.org/10.1016/j.jgr.2020.12.005