Acknowledgement
Supported by : National Natural Science Foundation of China (NSFC)
References
- Andrew, A.M. (2004), "Multiple view geometry in computer vision", Kybernetes, 30(9-10), 1865-1872.
- Bentes, C., Velotto, D. and Tings, B. (2017), "Ship classification in TerraSAR-X images with convolutional neural networks", IEEE J. Oceanic Eng., 43(1), 1-9. https://doi.org/10.1109/JOE.2017.2778479
- Celik, O., Dong, C.Z. and Catbas, F.N. (2018), "A computer vision approach for the load time history estimation of lively individuals and crowds", Comput. Struct., 200, 32-52. https://doi.org/10.1016/j.compstruc.2018.02.001
- Celik, O., Dong, C.Z. and Catbas, F.N. (2019), Measurement of Human Loads Using Computer Vision, Springer.
- Chen, Z., Li, H., Bao, Y., Li, N. and Jin, Y. (2016), "Identification of spatio-temporal distribution of vehicle loads on long-span bridges using computer vision technology", Struct. Control Health Monit., 23(3), 517-534. https://doi.org/10.1002/stc.1780
- Chen, Z.Q. and Hutchinson, T.C. (2010), "Image-based framework for concrete surface crack monitoring and quantification", Adv. Civil Eng., 2010.
- Chi, S. and Caldas, C.H. (2011), "Automated object identification using optical video cameras on construction sites", Comput.-Aided Civil Infrastruct. Eng., 26(5), 368-380. https://doi.org/10.1111/j.1467-8667.2010.00690.x
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), "Imagenet: A large-scale hierarchical image database", Computer Vision and Pattern Recognition, 2009, Florida, USA, June.
- Eum, H., Yoon, C., Lee, H. and Park, M. (2015), "Continuous human action recognition using depth-MHI-HOG and a spotter model", Sensors, 15(3), 5197-5227. https://doi.org/10.3390/s150305197
- German, S., Jeon, J.S., Zhu, Z., Bearman, C., Brilakis, I., Desroches, R. and Lowes, L. (2013), "Machine Vision-Enhanced Postearthquake Inspection", J. Comput. Civil Eng., 27(6), 622-634. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000333
- Girshick, R. (2015), "Fast R-CNN", Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, June.
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, June.
- Goerlandt, F., Montewka, J., Kuzmin, V. and Kujala, P. (2015), "A risk-informed ship collision alert system: Framework and application", Safety Sci., 77(1), 182-204. https://doi.org/10.1016/j.ssci.2015.03.015
- Gu, C., Lim, J.J., Arbelaez, P. and Malik, J. (2009), "Recognition using regions", Computer Vision and Pattern Recognition 2009, Florida, USA, June.
- He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017). "Mask rcnn", Computer Vision (ICCV), 2017 IEEE International Conference on Computer Vision, Venice, Italy, October.
- Hoskere, V., Narazaki, Y., Hoang, T. and Spencer Jr., B.F. (2018), "Vision-based structural inspection using multiscale deep convolutional neural networks", arXiv preprint arXiv:1805.01055.
- Hoskere, V., Narazaki, Y., Hoang, T.A. and Spencer Jr, B.F. (2018), "Towards automated post-earthquake inspections with deep learning-based condition-aware models", arXiv preprint arXiv:1809.09195.
- Huang, C.L. and Ma, H.N. (2012), "A moving object detection algorithm for vehicle localization", Proceedings of the 2012 Sixth International Conference on Genetic and Evolutionary Computing.
- Hyukmin, E., Jaeyun, B., Changyong, Y. and Euntai, K. (2015), "Ship detection using edge-based segmentation and histogram of oriented gradient with ship size ratio", Int. J. Fuzzy Log. Intell. Syst., 15(4), 251-259. https://doi.org/10.5391/IJFIS.2015.15.4.251
- Jahanshahi, M., Kelly, J., Masri, S. and Sukhatme, G. (2009), "A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures", Struct. Infrastruct. Eng., 5(6), 455-486. https://doi.org/10.1080/15732470801945930
- Kong, X. and Li, J. (2018), "Automated fatigue crack identification through motion tracking in a video stream", Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018.
- Kulchandani, J.S. and Dangarwala, K.J. (2015), "Moving object detection: Review of recent research trends", Proceedings of the International Conference on Pervasive Computing, St. Louis, Missouri, USA, March.
- Lecun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436. https://doi.org/10.1038/nature14539
- Lee, B.J., Shin, D.H., Seo, J.W., Jung, J.D. and Lee, J.Y. (2011). "Intelligent bridge inspection using remote controlled robot and image processing technique", Isarc Proceedings, Seoul, Korea, June.
- Li, S., Zhu, S., Xu, Y.L., Chen, Z.W. and Li, H. (2012), "Longterm condition assessment of suspenders under traffic loads based on structural monitoring system: Application to the Tsing Ma Bridge", Struct. Control Health Monit., 19(1), 82-101. https://doi.org/10.1002/stc.427
- Lin, C.W., Hsu, W.K., Chiou, D.J., Chen, C.W. and Chiang, W.L. (2015), "Smart monitoring system with multi-criteria decision using a feature based computer vision technique", Smart Struct. Syst., 15(6), 1583-1600. https://doi.org/10.12989/sss.2015.15.6.1583
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C. (2016), "SSD: Single shot multibox detector", European Conference on Computer Vision, Amsterdam, The Netherlands, October.
- Liu, Y., Cho, S., Spencer, B.F.J. and Fan, J. (2014), "Automated assessment of cracks on concrete surfaces using adaptive digital image processing", Smart Struct. Syst., 14(4), 719-741. https://doi.org/10.12989/sss.2014.14.4.719
- Liu, Z., Zhou, F., Bai, X. and Yu, X. (2013), "Automatic detection of ship target and motion direction in visual images", Int. J. Electronics, 100(1), 94-111. https://doi.org/10.1080/00207217.2012.687188
- Makantasis, K., Protopapadakis, E., Doulamis, A., Doulamis, N. and Loupos, C. (2015), "Deep convolutional neural networks for efficient vision based tunnel inspection", Proceedings of the IEEE International Conference on Intelligent Computer Communication and Processing, Huston, TX, USA, April.
- Narazaki, Y., Hoskere, V., Hoang, T.A. and Spencer Jr., B.F. (2018a), "Automated vision-based bridge component extraction using multiscale convolutional neural networks", arXiv preprint arXiv:1805.06042.
- Narazaki, Y., Hoskere, V., Hoang, T.A. and Spencer Jr,. B.F. (2018b), "Automated bridge component recognition using video data", arXiv preprint arXiv:1806.06820.
- Oh, J.K., Jang, G., Oh, S., Lee, J.H., Yi, B.J., Moon, Y.S., Lee, J.S. and Choi, Y. (2009), "Bridge inspection robot system with machine vision", Automat Constr., 18(7), 929-941. https://doi.org/10.1016/j.autcon.2009.04.003
- Otsu, N. (1979), "A threshold selection method from gray-level histograms", IEEE T Syst. Man Cy, 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Ou, J. and Li, H. (2010), "Structural health monitoring in mainland China: Review and future trends", Struct. Health Monit., 9(3), 219-231. https://doi.org/10.1177/1475921710365269
- Pan, S.J. and Yang, Q. (2010), "A survey on transfer learning", IEEE T. Knowledge Data Eng., 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
- Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), "You only look once: Unified, real-time object detection", Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, USA, June.
- Ren, S., Girshick, R., Girshick, R. and Sun, J. (2015), "Faster RCNN: Towards Real-Time Object Detection with Region Proposal Networks", IEEE T. Pattern Anal. Machine Intell., 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Rowley, H.A., Baluja, S. and Kanade, T. (1998), "Rotation invariant neural network-based face detection", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, June.
- Sermanet, P., Kavukcuoglu, K., Chintala, S. and Lecun, Y. (2013), "Pedestrian detection with unsupervised multi-stage feature learning", Computer Vision and Pattern Recognition 2013, Portland, Oregon, USA, June.
- Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556.
- Sinha, S.K. and Fieguth, P.W. (2006), "Automated detection of cracks in buried concrete pipe images", Automat Constr., 15(1), 58-72. https://doi.org/10.1016/j.autcon.2005.02.006
- Steger, C., Ulrich, M. and Wiedemann, C. (2018), Machine vision algorithms and applications, John Wiley & Sons.
- Stockman, G. and Shapiro, L.G. (2001), Computer Vision, Prentice Hall, Upper Saddle River, New Jersey, USA.
- Szeliski, R. (2010), Computer vision: algorithms and applications, Springer Science & Business Media, Berlin, Germany.
- Vaillant, R., Monrocq, C. and Cun, Y.L. (1994), "Original approach for the localisation of objects in images", Vision, Image and Signal Processing, IEE Proceedings, 141(4), 245-250. https://doi.org/10.1049/ip-vis:19941301
- Wang, X. (2011), "Ship target detection and tracking in cluttered infrared imagery", Opt. Eng., 50(5), 057207-057207-057212. https://doi.org/10.1117/1.3578402
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2018), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumergrade camera images", Struct. Health Monit., 1475921718764873.
- Xu, Y., Li, S., Zhang, D., Jin, Y., Zhang, F., Li, N. and Li, H. (2017), "Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images", Struct. Control Health Monit., 25(2), e2075. https://doi.org/10.1002/stc.2075
- Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C. and Mascarenas, D. (2017), "Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification", Mech. Syst. Signal Pr., 85, 567-590. https://doi.org/10.1016/j.ymssp.2016.08.041
- Yao, Y., Jiang, Z. and Zhao, D. (2017), "Ship detection in optical remote sensing images based on deep convolutional neural networks", J. Appl. Remote Sens.. 11(4), 1.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: Algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Yeum, C.M., Dyke, S.J. and Ramirez, J. (2018), "Visual data classification in post-event building reconnaissance", Eng. Struct., 155, 16-24. https://doi.org/10.1016/j.engstruct.2017.10.057
- Zhu, D., Feng, Y., Chen, Q. and Cai, J. (2010), "Image recognition technology in rotating machinery fault diagnosis based on artificial immune", Smart Struct. Syst., 6(4), 389-403. https://doi.org/10.12989/sss.2010.6.4.389