Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Allam, S.M., Shoukry, M.S., Rashad, G.E. and Hassan, A.S. (2012), "Crack width evaluation for flexural rc members", Alexandria Eng. J., 51, 211-220. https://doi.org/10.1016/j.aej.2012.05.001
- Allam, S.M., Shoukry, M.S., Rashad, G.E. and Hassan, A.S. (2013), "Evaluation of tension stiffening effect on the crack width calculation of flexural rc member", Alexandria Eng. J., 52, 163-173. https://doi.org/10.1016/j.aej.2012.12.005
- Balazs, G.L. (1993), "Cracking analysis based on slip and bond stresses", Am. Concrete Inst.: Mater. J., 90, 320-348.
- Belarbi, A. and Hsu, T.T.C. (1994), "constitutive laws of concrete in tension and reinforcing bars stiffened by concrete", Am. Concrete Inst.: Struct. J., 91, 465-474.
- Collins, M.P. and Mitchell, D. (1991), Prestressed Concrete Structures, Prentice Hall, New Jersey, UK.
- Committee Euro-International Du Beton (2013), CEB-FIP Model Code 2010, Design Code, Thomas Telford, Paris, France.
- Eurocode 2 (2010), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, CEN/TC250, EN 1992-1-1.
- Feng, D. and Feng, M.Q. (2016), "Vision-based multipoint displacement for structural health monitoring", Struct. Control Hlth. Monit., 23, 876-890. https://doi.org/10.1002/stc.1819
- Fukuda, Y., Feng, M.Q., Narita, Y., Kaneko, S. and Tanaka, T. (2013), "Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm", IEEE Sens. J., 13, 4725-4732. https://doi.org/10.1109/JSEN.2013.2273309
- Gergely, P. and Lutz, L.A. (1968), "Maximum crack width in RC flexural members, causes, mechanism and control of cracking in concrete", SP-20 American Concrete Institute, Detroit, 87-117.
- Hassan, A.S. (2008), "Crack control for reinforced concrete members subjected to flexure", Master of Science Thesis, Alexandria University, Alexandria, Egypt.
- Johnson, A.I. (1951), "Deformation of reinforced concrete", Int. Assoc. Bridge Struct. Eng. Publ., 11, 253-290.
- Kang, S.B., Tan, K.H., Zhou, X.H. and Yang, B. (2017), "Influence of reinforcement ratio on tension stiffening of reinforced engineered cementitious composites", Eng. Struct., 141, 251-261. https://doi.org/10.1016/j.engstruct.2017.03.029
- Korean Highway Bridge Specifications (2012), Korean Ministry of Construction and Transportation.
- Lee, J.H., Ho, H.N., Shinozuka, M. and Lee, J.J. (2012), "An advanced bision-based system for real-time displacement measurement of high-rise buildings", Smart Mater. Struct., 21, 1-10.
- Lee, J.H., Jung, C.Y., Choi, E. and Cheung, J.H. (2017), "Visionbased multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation", Smart Struct. Syst., 20(5), 563-572. https://doi.org/10.12989/SSS.2017.20.5.563
- Lee, S.C., Cho, J.Y. and Vecchio, F.J. (2011), "Model for postyield tension stiffening and rebar rupture in concrete members", Eng. Struct., 33, 1723-1733. https://doi.org/10.1016/j.engstruct.2011.02.009
- Lee, S.C., Cho, J.Y. and Vecchio, F.J. (2013), "Tension-stiffening model for steel fiber-reinforced concrete containing conventional reinforcement", Am. Concrete Inst.: Struct. J., 110, 639-648.
- Leonhardt, F. (1977), "Crack control in concrete structures", IABSE Surveys, No.S4/77, International Association for Bridges and Structural Engineering, Zurich.
- Lin, C.W., Hsu, W.K., Chiou, D.J., Chen, C.W. and Chiang, W.L. (2015), "Smart monitoring system with multi-criteria decision using a feature based computer vision technique", Smart Struct. Syst., 15, 1583-1600. https://doi.org/10.12989/sss.2015.15.6.1583
- Mondal, T.G. and Prakash, S.S. (2015), "Effect of tension stiffening on the behaviour of reinforced concrete circular columns under torsion", Eng. Struct., 92, 186-195. https://doi.org/10.1016/j.engstruct.2015.03.018
- Scanlon, A. and Murray, D.W. (1974), "Time-dependent reinforced concrete slab deflections", J. Struct. Div., ASCE, 100, 1911-1924. https://doi.org/10.1061/JSDEAG.0003881
- Scott, R.H. and Beeby, A.W. (2012), "Evaluation and management of tension stiffening", Am. Concrete Inst.: Spec. Publ., 284, 1-18.
- Structural Use of Concrete (1997), Code of Practice for Design and Construction, British Standards Institution: UK.
- Watstein, D. and Parsons, D.E. (1943), "Width and spacing of tensile cracks in axially reinforced concrete cylinders", J. Res. Nat. Bureau Stand., 31, 1-24. https://doi.org/10.6028/jres.031.001
- Welch, G.B. and Janjua, M.A. (1971), "Width and spacing of tensile cracks in reinforced concrete", UNICIV Report No R76, University of NSW, Kensington.
- Yankelevsky, D.Z., Jabareen, M. and Abutbul, A.D. (2008), "Onedimensional analysis of tension stiffening in reinforced concrete with discrete cracks", Eng. Struct., 30, 206-217. https://doi.org/10.1016/j.engstruct.2007.03.013
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification", Smart Struct. Syst., 18, 585-599. https://doi.org/10.12989/sss.2016.18.3.585
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12, 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
Cited by
- Development of a user-friendly and transparent non-linear analysis program for RC walls vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.327
- 색상에 기반한 영상분석기법을 이용한 콘크리트 거더의 휨 거동 분석 vol.24, pp.4, 2019, https://doi.org/10.11112/jksmi.2020.24.4.48