DOI QR코드

DOI QR Code

Mechanics of a variable damping self-centering brace: Seismic performance and failure modes

  • Xie, Xing-Si (School of Civil Engineering, Beijing Jiaotong University) ;
  • Xu, Long-He (School of Civil Engineering, Beijing Jiaotong University) ;
  • Li, Zhong-Xian (Key Laboratory of Coast Civil Structure Safety of China Ministry of Education, Tianjin University)
  • 투고 : 2018.05.30
  • 심사 : 2019.03.20
  • 발행 : 2019.04.25

초록

The force-deformation behavior, strain distribution and failure modes of a variable damping self-centering brace (VD-SCB) are theoretically analyzed, experimentally studied, and numerically simulated to guide its design. The working principle of the brace is explained by describing the working stages and the key feature points of the hysteretic curve. A large-scale brace specimen was tested under different sinusoidal excitations to analyze the recentering capability and energy dissipation. Results demonstrate that the VD-SCB exhibits a full quasi-flag-shaped hysteretic response, high ultimate bearing capacity, low activation force and residual deformation, and excellent recentering and energy dissipation capabilities. Calculation equations of the strain distribution in different parts of the brace are proposed and are compared with the experimental data and simulated results. The developments of two failure modes are compared. Under normal circumstances, the brace fails due to the yielding of the spring blocking plates, which are easily replaced to restore the normal operating conditions of the brace. A brief description of the design procedure of the brace is proposed for application.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Beijing Natural Science Foundation of China

참고문헌

  1. Abou-Elfath, H. (2017), "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Mater. Struct., 26(5), 055020. https://doi.org/10.1088/1361-665X/aa6abc
  2. Chi, P., Guo, T., Peng, Y., Cao, D. and Dong, J. (2018), "Development of a self-centering tension-only brace for seismic protection of frame structures", Steel Compos. Struct., Int. J., 26(5), 573-582.
  3. Choi, E., Youn, H., Park, K. and Jeon, J.S. (2017), "Vibration tests of precompressed rubber springs and a flag-shaped smart damper", Eng. Struct., 132, 372-382. https://doi.org/10.1016/j.engstruct.2016.11.050
  4. Chou, C.C. and Chung, P.T. (2014), "Development of crossanchored dual-core self-centering braces for seismic resistance", J. Constr. Steel Res., 101, 19-32. https://doi.org/10.1016/j.jcsr.2014.04.035
  5. Chou, C.C. and Chung, P.T. (2015), "Development of steel dualcore self-centering braces: quasi-static cyclic tests and finite element analyses", Earthq. Spectra, 31(1), 141208072728004.
  6. Chou, C.C., Tsai, W.J. and Chung, P.T. (2016), "Development and validation tests of a dual-core self-centering sandwiched buckling-restrained brace (SC-SBRB) for seismic resistance", Eng. Struct., 121, 30-41. https://doi.org/10.1016/j.engstruct.2016.04.015
  7. Christopoulos, C., Tremblay, R., Kim, H.J. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96)
  8. Eatherton, M.R., Fahnestock, L.A. and Miller, D.J. (2014), "Computational study of self-centering buckling-restrained braced frame seismic performance", Earthq. Eng. Struct. D., 43(13), 1897-1914. https://doi.org/10.1002/eqe.2428
  9. Erochko, J., Christopoulos, C. and Tremblay, R. (2015a), "Design and testing of an enhanced-elongation telescoping self-centering energy-dissipative brace", J. Struct. Eng., 141(6), 04014163. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001109
  10. Erochko, J., Christopoulos, C. and Tremblay, R. (2015b), "Design, testing, and detailed component modeling of a high-capacity self-centering energy-dissipative brace", J. Struct. Eng., 141(8), 04014193. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001166
  11. Kitayama, S. and Constantinou, M.C. (2016), "Seismic response analysis of single-degree-of-freedom yielding structures with fluidic self-centering systems", Eng. Struct., 125, 266-279. https://doi.org/10.1016/j.engstruct.2016.06.057
  12. Ma, H. and Yam, M.C.H. (2011), "Modeling of a self-centering damper and its application in structural control", J. Constr. Steel Res., 67(4), 656-666. https://doi.org/10.1016/j.jcsr.2010.11.014
  13. McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M. (2008), "Permissible residual deformation levels for building structures considering both safety and human elements", Proceedings of the 14th World Conference on Earthquake Engineering, Bejing, China.
  14. Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037
  15. Ozbulut, O.E. and Hurlebaus, S. (2012), "Application of an SMAbased hybrid control device to 20-story nonlinear benchmark building", Earthq. Eng. Struct. D., 41(13), 1831-1843. https://doi.org/10.1002/eqe.2160
  16. Wang, H., Nie, X. and Pan, P. (2017), "Development of a selfcentering buckling restrained brace using cross-anchored prestressed steel strands", J. Constr. Steel Res., 138, 621-632. https://doi.org/10.1016/j.jcsr.2017.07.017
  17. Xie, Q., Zhou, Z., Huang, J.H. and Meng, S.P. (2016), "Influence of tube length tolerance on seismic responses of multi-storey buildings with dual-tube self-centering buckling-restrained braces", Eng. Struct., 116, 26-39. https://doi.org/10.1016/j.engstruct.2016.02.023
  18. Xu, L.H., Fan, X.W. and Li, Z.X. (2016a), "Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace", Eng. Struct., 127, 49-61. https://doi.org/10.1016/j.engstruct.2016.08.043
  19. Xu, L.H., Fan, X.W., Lu, D.C. and Li, Z.X. (2016b), "Hysteretic behavior studies of self-centering energy dissipation bracing system", Steel Compos. Struct., Int. J., 20(6), 1205-1219. https://doi.org/10.12989/scs.2016.20.6.1205
  20. Xu, L.H., Xie, X.S. and Li, Z.X. (2018), "Development and experimental study of a self-centering variable damping energy dissipation brace", Eng. Struct., 160, 270-280. https://doi.org/10.1016/j.engstruct.2018.01.051
  21. Zhou, Z., He, X.T., Wu, J., Wang, C.L. and Meng, S.P. (2014), "Development of a novel self-centering buckling-restrained brace with BFRP composite tendons", Steel Compos. Struct., Int. J., 16(5), 491-506. https://doi.org/10.12989/scs.2014.16.5.491

피인용 문헌

  1. Seismic evaluation of self-centering energy dissipating braces using fragility curves vol.37, pp.6, 2019, https://doi.org/10.12989/scs.2020.37.6.679