References
- Achache, H., Benzerdjeb, A., Mehidi, A., Boutabout, B. and Ouinas, D. (2017), "Delamination of a composite laminated under monotonic loading", Struct. Eng. Mech., Int. J., 63(5), 597-605.
- Ansari, Md. and Chakrabarti, A. (2016), "Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses", Struct. Eng. Mech., Int. J., 60(5), 829-849. https://doi.org/10.12989/sem.2016.60.5.829
- Beckermann, G. and Pickering, K. (2015), "Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils", Compos. Part A: Appl. Sci. Manuf., 72, 11-21. https://doi.org/10.1016/j.compositesa.2015.01.028
- Beylergil, B., Tanoglu, M. and Aktas, A. (2016), "Modification of carbon fibre/epoxy composites by polyvinyl alcohol (PVA) based electrospun nanofibers", Adv. Compos. Lett., 25(3), 69-76.
- Beylergil, B., Tanoglu, M. and Aktas, A. (2017), "Enhancement of interlaminar fracture toughness of carbon fiber-epoxy composites using polyamide-6,6 electrospun nanofibers", J. Appl. Polym. Sci., 134(35), 1-12.
- Brandt, J., Drechsler, K. and Arendts, F.-J. (1996), "Mechanical performance of composites based on various three-dimensional woven-fibre performs", Compos. Sci. Technol., 56(3), 381-386. https://doi.org/10.1016/0266-3538(95)00135-2
- Fallah, N., Vaez, S.R.H. and Fasihi, H. (2018), "Damage identification in laminated composite plates using a new multistep approach", Steel Compos. Struct., Int. J., 29(1), 139-149.
- Fitzmaurice, K., Ray, D. and McCarthy, M.A (2016), "PET interleaving veils for improved fracture toughness of glass fibre/low-styrene-emission unsaturated polyester resin composites", J. Appl. Polym. Sci., 133, 42877.
- Greenhalgh, E.S. (2009), Failure Analysis and Fractography of Polymer Composites, (1st Edition), Woodhead Publishing Ltd., Elsevier, USA.
- Greenhalgh, E.S., Rogers, C. and Robinson, P. (2009), "Fractographic observations on delamination growth and the subsequent migration through the laminate", Compos. Sci. Technol., 69(14), 2345-2351. https://doi.org/10.1016/j.compscitech.2009.01.034
- Ho-Huu, V., Vo-Duy, T., Duong-Gia, D. and Nguyen-Thoi, T. (2018), "An efficient procedure for lightweight optimal design of composite laminated beams, Steel Compos. Struct., Int. J., 27(3), 297-310.
- Kang, T.J. and Lee, S.H. (1994), "Effect of stitching on the mechanical and impact properties of woven laminate composite", J. Compos. Mater., 28(16), 1574-1587. https://doi.org/10.1177/002199839402801604
- Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., Int. J., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387
- Kuwata, M. (2010), "Mechanisms of interlaminar fracture toughness using non-woven veils as interleaf materials", Ph.D. Dissertation; Queen Mary University, London, UK.
- Lakshmipathi, J. and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and nonuniform composite plates", Steel Compos. Struct., Int. J., 30(1), 31-46.
- Lee, S.H., Noguchi, H., Kim, Y.B. and Cheong, S.K. (2002), "Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part I - Mode II", J. Compos. Mater., 36(18), 2153-2168. https://doi.org/10.1177/0021998302036018981
- Li, G., Li, P., Yu, Y., Jia, X., Zhang, S., Yong, X. and Ryu, S. (2008), "Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers", Matter. Lett., 62(3), 987-994.
- Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Steel Compos. Struct., Int. J., 53(4), 767-780.
- Liu, L., Zhang, H. and Zhou, Y. (2014), "Quasi-static mechanical response and corresponding analytical model of laminates incorporating with nanoweb interlayers", Compos. Struct., 111, 436-445. https://doi.org/10.1016/j.compstruct.2014.01.021
- Mahieddine, A., Ouali, M. and Mazouz, A. (2015), "Modeling and simulation of partially delaminated composite beams", Steel Compos. Struct., Int. J., 18(5), 1119-1127. https://doi.org/10.12989/scs.2015.18.5.1119
- Miller, S.G., Roberts, G.D., Kohlman, L.W., Heimann, P., Pereira, M., Rugreri, C. and Martin, R. (2015), "Impact behavior of composite fan blade leading edge subcomponent with thermoplastic polyurethane interleave", Proceedings of 20th International Conference on Composite Materials, Copenhagen, Denmark.
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422.
- Molnar, K., Kostakova, E. and Meszaros, L. (2014), "The effect of needleless electrospun nanofibrous interleaves on mechanical properties of carbon fabrics/epoxy laminates", eXPRESS Polym Lett., 8(1), 256-262. https://doi.org/10.3144/expresspolymlett.2014.29
- Nash, N.H., Young, T.M. and Stanley, W.F. (2016), "The reversibility of Mode-I and -II interlaminar fracture toughness after hydrothermal aging of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer", Compos. Struct., 152, 558-567. https://doi.org/10.1016/j.compstruct.2016.05.086
- Ni, N., Wen Y., He, D., Yi, X., Zhang, T. and Xu, Y. (2015), "High damping and high stiffness CFRP composites with aramid nonwoven fabric interlayers", Compos. Sci. Technol., 117, 92-99. https://doi.org/10.1016/j.compscitech.2015.06.002
- O'Donovan, K., Ray, D. and McCarthy, M.A. (2014), "Toughening Effects of Interleaved Nylon Veils on Glass Fabric/Low-Styrene-Emission Unsaturated Polyester Resin Composites", J. Appl. Polym. Sci., 132, 41462.
- Palazzetti, R. and Zucchelli, A. (2017), "Electrospun nanofibers as reinforcement for composite laminates materials-A review", Compos. Struct., 182, 711-727. https://doi.org/10.1016/j.compstruct.2017.09.021
- Pekbey, Y., Aslantas, K. and Yumak, N. (2017), "Ballistic impact response of Kevlar Composites with filled epoxy matrix", Steel Compos. Struct., Int. J., 24(2), 191-200.
- Ramirez, V.A., Hogg, P.J. and Sampson, W.W. (2015), "The influence of the nonwoven veil architectures on interlaminar fracture toughness of interleaved composites", Compos. Sci. Technol., 110, 103-110. https://doi.org/10.1016/j.compscitech.2015.01.016
- Reeder, J.R. (1995), "Stitching vs. a toughened matrix: compression strength effects", J. Compos. Mater., 29, 2464-2487. https://doi.org/10.1177/002199839502901805
- Saz-Orozco, B.D., Ray, D. and Stanley, W.F. (2017), "Effect of thermoplastic veils on interlaminar fracture Toughness of a Glass Fiber/Vinyl Ester Composite", Polym. Compos., 38(11), 2501-2508. https://doi.org/10.1002/pc.23840
- Steeves, C. and Fleck, N.A. (1999), "Z-pinned composite laminates: knockdown in compressive strength", Proceedings of the 5th Conference of Delamination and Fracture of Composites, London, UK, March, pp. 60-68.
- Tanzawa, Y. Watanabe, N. and Ishikawa, T. (2001), "FEM simulation of a modified DCB test for 3-D orthogonal interlocked fabric composites", Compos. Sci. Technol., 61(8), 1097-1107. https://doi.org/10.1016/S0266-3538(01)00003-3
- Zhang, J., Yang, T., Lin, T. and Wang, C-H. (2012), "Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites", Compos. Sci. Technol., 72(2), 256-262. https://doi.org/10.1016/j.compscitech.2011.11.010