DOI QR코드

DOI QR Code

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan (Department of Mechanical Engineering, Alanya Alaaddin Keykubat University) ;
  • Tanoglu, Metin (Department of Mechanical Engineering, Izmir Institute of Technology) ;
  • Aktas, Engin (Department of Civil Engineering, Izmir Institute of Technology)
  • Received : 2018.02.04
  • Accepted : 2019.03.22
  • Published : 2019.04.25

Abstract

In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

Keywords

References

  1. Achache, H., Benzerdjeb, A., Mehidi, A., Boutabout, B. and Ouinas, D. (2017), "Delamination of a composite laminated under monotonic loading", Struct. Eng. Mech., Int. J., 63(5), 597-605.
  2. Ansari, Md. and Chakrabarti, A. (2016), "Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses", Struct. Eng. Mech., Int. J., 60(5), 829-849. https://doi.org/10.12989/sem.2016.60.5.829
  3. Beckermann, G. and Pickering, K. (2015), "Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils", Compos. Part A: Appl. Sci. Manuf., 72, 11-21. https://doi.org/10.1016/j.compositesa.2015.01.028
  4. Beylergil, B., Tanoglu, M. and Aktas, A. (2016), "Modification of carbon fibre/epoxy composites by polyvinyl alcohol (PVA) based electrospun nanofibers", Adv. Compos. Lett., 25(3), 69-76.
  5. Beylergil, B., Tanoglu, M. and Aktas, A. (2017), "Enhancement of interlaminar fracture toughness of carbon fiber-epoxy composites using polyamide-6,6 electrospun nanofibers", J. Appl. Polym. Sci., 134(35), 1-12.
  6. Brandt, J., Drechsler, K. and Arendts, F.-J. (1996), "Mechanical performance of composites based on various three-dimensional woven-fibre performs", Compos. Sci. Technol., 56(3), 381-386. https://doi.org/10.1016/0266-3538(95)00135-2
  7. Fallah, N., Vaez, S.R.H. and Fasihi, H. (2018), "Damage identification in laminated composite plates using a new multistep approach", Steel Compos. Struct., Int. J., 29(1), 139-149.
  8. Fitzmaurice, K., Ray, D. and McCarthy, M.A (2016), "PET interleaving veils for improved fracture toughness of glass fibre/low-styrene-emission unsaturated polyester resin composites", J. Appl. Polym. Sci., 133, 42877.
  9. Greenhalgh, E.S. (2009), Failure Analysis and Fractography of Polymer Composites, (1st Edition), Woodhead Publishing Ltd., Elsevier, USA.
  10. Greenhalgh, E.S., Rogers, C. and Robinson, P. (2009), "Fractographic observations on delamination growth and the subsequent migration through the laminate", Compos. Sci. Technol., 69(14), 2345-2351. https://doi.org/10.1016/j.compscitech.2009.01.034
  11. Ho-Huu, V., Vo-Duy, T., Duong-Gia, D. and Nguyen-Thoi, T. (2018), "An efficient procedure for lightweight optimal design of composite laminated beams, Steel Compos. Struct., Int. J., 27(3), 297-310.
  12. Kang, T.J. and Lee, S.H. (1994), "Effect of stitching on the mechanical and impact properties of woven laminate composite", J. Compos. Mater., 28(16), 1574-1587. https://doi.org/10.1177/002199839402801604
  13. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., Int. J., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387
  14. Kuwata, M. (2010), "Mechanisms of interlaminar fracture toughness using non-woven veils as interleaf materials", Ph.D. Dissertation; Queen Mary University, London, UK.
  15. Lakshmipathi, J. and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and nonuniform composite plates", Steel Compos. Struct., Int. J., 30(1), 31-46.
  16. Lee, S.H., Noguchi, H., Kim, Y.B. and Cheong, S.K. (2002), "Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part I - Mode II", J. Compos. Mater., 36(18), 2153-2168. https://doi.org/10.1177/0021998302036018981
  17. Li, G., Li, P., Yu, Y., Jia, X., Zhang, S., Yong, X. and Ryu, S. (2008), "Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers", Matter. Lett., 62(3), 987-994.
  18. Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Steel Compos. Struct., Int. J., 53(4), 767-780.
  19. Liu, L., Zhang, H. and Zhou, Y. (2014), "Quasi-static mechanical response and corresponding analytical model of laminates incorporating with nanoweb interlayers", Compos. Struct., 111, 436-445. https://doi.org/10.1016/j.compstruct.2014.01.021
  20. Mahieddine, A., Ouali, M. and Mazouz, A. (2015), "Modeling and simulation of partially delaminated composite beams", Steel Compos. Struct., Int. J., 18(5), 1119-1127. https://doi.org/10.12989/scs.2015.18.5.1119
  21. Miller, S.G., Roberts, G.D., Kohlman, L.W., Heimann, P., Pereira, M., Rugreri, C. and Martin, R. (2015), "Impact behavior of composite fan blade leading edge subcomponent with thermoplastic polyurethane interleave", Proceedings of 20th International Conference on Composite Materials, Copenhagen, Denmark.
  22. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422.
  23. Molnar, K., Kostakova, E. and Meszaros, L. (2014), "The effect of needleless electrospun nanofibrous interleaves on mechanical properties of carbon fabrics/epoxy laminates", eXPRESS Polym Lett., 8(1), 256-262. https://doi.org/10.3144/expresspolymlett.2014.29
  24. Nash, N.H., Young, T.M. and Stanley, W.F. (2016), "The reversibility of Mode-I and -II interlaminar fracture toughness after hydrothermal aging of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer", Compos. Struct., 152, 558-567. https://doi.org/10.1016/j.compstruct.2016.05.086
  25. Ni, N., Wen Y., He, D., Yi, X., Zhang, T. and Xu, Y. (2015), "High damping and high stiffness CFRP composites with aramid nonwoven fabric interlayers", Compos. Sci. Technol., 117, 92-99. https://doi.org/10.1016/j.compscitech.2015.06.002
  26. O'Donovan, K., Ray, D. and McCarthy, M.A. (2014), "Toughening Effects of Interleaved Nylon Veils on Glass Fabric/Low-Styrene-Emission Unsaturated Polyester Resin Composites", J. Appl. Polym. Sci., 132, 41462.
  27. Palazzetti, R. and Zucchelli, A. (2017), "Electrospun nanofibers as reinforcement for composite laminates materials-A review", Compos. Struct., 182, 711-727. https://doi.org/10.1016/j.compstruct.2017.09.021
  28. Pekbey, Y., Aslantas, K. and Yumak, N. (2017), "Ballistic impact response of Kevlar Composites with filled epoxy matrix", Steel Compos. Struct., Int. J., 24(2), 191-200.
  29. Ramirez, V.A., Hogg, P.J. and Sampson, W.W. (2015), "The influence of the nonwoven veil architectures on interlaminar fracture toughness of interleaved composites", Compos. Sci. Technol., 110, 103-110. https://doi.org/10.1016/j.compscitech.2015.01.016
  30. Reeder, J.R. (1995), "Stitching vs. a toughened matrix: compression strength effects", J. Compos. Mater., 29, 2464-2487. https://doi.org/10.1177/002199839502901805
  31. Saz-Orozco, B.D., Ray, D. and Stanley, W.F. (2017), "Effect of thermoplastic veils on interlaminar fracture Toughness of a Glass Fiber/Vinyl Ester Composite", Polym. Compos., 38(11), 2501-2508. https://doi.org/10.1002/pc.23840
  32. Steeves, C. and Fleck, N.A. (1999), "Z-pinned composite laminates: knockdown in compressive strength", Proceedings of the 5th Conference of Delamination and Fracture of Composites, London, UK, March, pp. 60-68.
  33. Tanzawa, Y. Watanabe, N. and Ishikawa, T. (2001), "FEM simulation of a modified DCB test for 3-D orthogonal interlocked fabric composites", Compos. Sci. Technol., 61(8), 1097-1107. https://doi.org/10.1016/S0266-3538(01)00003-3
  34. Zhang, J., Yang, T., Lin, T. and Wang, C-H. (2012), "Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites", Compos. Sci. Technol., 72(2), 256-262. https://doi.org/10.1016/j.compscitech.2011.11.010