Acknowledgement
Supported by : Natural Science Foundation (NSF)
References
- Alpert, R.L. and Ward, E.J. (1984), "Evaluation of unsprinklered fire hazards", Fire Safety J., 7(2), 127-143. https://doi.org/10.1016/0379-7112(84)90033-X
- Bak, P., Chen, K., and Tang, C. (1990), "A forest-fire model and some thoughts on turbulence", Physics letters A, 147(5-6), 297-300. https://doi.org/10.1016/0375-9601(90)90451-S
- Bandini, S., Federici, M.L., Manzoni, S. and Vizzari, G. (2005), "Towards a methodology for situated cellular agent-based crowd simulations", International Workshop on Engineering Societies in the Agents World, Springer, Berlin, Heidelberg, 203-220.
- Bo, Y., Cheng, W., Hua, H. and Lijun, L. (2007), "A multi-agent and PSO based simulation for human behavior in emergency evacuation", Computational Intelligence and Security, 2007 International Conference on IEEE, Harbin, China, December, 296-300.
- Bonabeau, E. (2002), "Agent-based modeling: Methods and techniques for simulating human systems", Proceedings of the National Academy of Sciences, 99(suppl 3), 7280-7287. https://doi.org/10.1073/pnas.082080899
- Braun, A., Bodmann, B.E. and Musse, S.R. (2005), "Simulating virtual crowds in emergency situations", Proceedings of the ACM symposium on Virtual Reality Software and Technology, Monterey, Canada, November, 244-252.
- Cantrell, W.A., Petty, M.D., Knight, S.L. and Schueler, W.K. (2018), "Physics-based modeling of crowd evacuation in the Unity game engine", J. Model., Simul. Sci. Comput., 1850029.
- Cao, S.C., Song, W.G., Liu, X.D. and Mu, N. (2014), "Simulation of pedestrian evacuation in a room under fire emergency", Procedia Eng., 71, 403-409. https://doi.org/10.1016/j.proeng.2014.04.058
- Cao, S., Song, W. and Lv, W. (2016), "Modeling pedestrian evacuation with guiders based on a multi-grid model", Physics Letters A, 380(4), 540-547. https://doi.org/10.1016/j.physleta.2015.11.028
- Cao, S., Song, W., Lv, W. and Fang, Z. (2015), "A multi-grid model for pedestrian evacuation in a room without visibility", Physica A Stat. Mech. Appl., 436, 45-61. https://doi.org/10.1016/j.physa.2015.05.019
- Chaturvedi, A., Mellema, A., Filatyev, S. and Gore, J. (2006), "DDDAS for fire and agent evacuation modeling of the rhode island nightclub fire", International Conference on Computational Science, Springer, Berlin, Heidelberg, 433-439.
- Datta, S. (2018), "EVAQ: Person-specific Evacuation simulation for large crowd egress analysis", M.Sc. Dissertation, Texas A&M University, Texas, U.S.A.
- Fahy, R.F. (1999), "User's Manual, EXIT89 v 1.01, An Evacuation Model for High-Rise Buildings", National Fire Protection Association, Quincy, MA, U.S.A.
- Federal Bureau of Investigation (FBI) (2016), 2016 crime in the United States; FBI, Washington D.C., U.S.A. https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/topic-pages/expanded-offense.
- Federal Emergency Management Agency (FEMA) (2017), Civilian fire fatalities in residential buildings (2013-2015); FEMA, Washington D.C., U.S.A. www.usfa.fema.gov/downloads/pdf/statistics/v18i4.pdf.
- Fraser-Mitchell, J.N. (1994), "An object-oriented simulation (Crisp 11) for fire risk assessment", Fire Safety Sci., 4, 793-804. https://doi.org/10.3801/IAFSS.FSS.4-793
- Fu, Z., Zhou, X., Zhu, K., Chen, Y., Zhuang, Y., Hu, Y., Yang, L. Chen, C. and Li, J. (2015), "A floor field cellular automaton for crowd evacuation considering different walking abilities", Physica A Stat. Mech. Appl., 420, 294-303. https://doi.org/10.1016/j.physa.2014.11.006
- Grosshandler, W.L., Bryner, N.P., Madrzykowski, D. and Kuntz, K. (2005), "Draft report of the technical investigation of The Station nightclub fire", National Institute of Standards and Technology, U.S. Department of Commerce, U.S.A.
- Guo, R.Y., and Huang, H.J. (2008), "A mobile lattice gas model for simulating pedestrian evacuation", Physica A Stat. Mech. Appl., 387(2-3), 580-586. https://doi.org/10.1016/j.physa.2007.10.001
- Guo, R.Y., Huang, H.J. and Wong, S.C. (2011), "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method", Transport. Res. Part B Methodologic., 45(3), 490-506. https://doi.org/10.1016/j.trb.2010.09.009
- Guo, S., Hu, X. and Wang, X. (2012), "On time granularity and event granularity in simulation service composition (WIP)", Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-DEVS Integrative M&S Symposium, Florida, U.S.A., March, 38.
- Guo, X., Chen, J., You, S. and Wei, J. (2013), "Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model", Physica A Stat. Mech. Appl., 392(9), 1994-2006. https://doi.org/10.1016/j.physa.2012.12.033
- Gwynne, S., Galea, E.R., Owen, M., Lawrence, P.J. and Filippidis, L. (1999), "A review of the methodologies used in the computer simulation of evacuation from the built environment", Build. Environ., 34(6), 741-749. https://doi.org/10.1016/S0360-1323(98)00057-2
- Hoffmann, N.A. and Galea, E.R. (1993), "An extension of the fire-field modeling technique to include firesprinkler interaction-II. The simulations", J. Heat Mass Transfer, 36(6), 1445-1457. https://doi.org/10.1016/S0017-9310(05)80055-9
- Hurley, M.J., Gottuk, D.T., Hall Jr, J.R., Harada, K., Kuligowski, E.D., Puchovsky, M., Torero, J.L., Watts Jr., J.M. and Wieczorek, C.J. (2015), SFPE Handbook of Fire Protection Engineering, Springer, Berlin, Germany.
- Ji, Q. and Gao, C. (2006), "Simulating crowd evacuation with a leader-follower model", IJCSES, 1(4), 249-252.
- Kirchner, A. and Schadschneider, A. (2002), "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics", Physica A Stat. Mech. Appl., 312(1-2), 260-276. https://doi.org/10.1016/S0378-4371(02)00857-9
- Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A. and Schreckenberg, M. (2003), "Simulation of competitive egress behavior: comparison with aircraft evacuation data", Physica A Stat. Mech. Appl., 324(3-4), 689-697. https://doi.org/10.1016/S0378-4371(03)00076-1
- Kobes, M., Helsloot, I., De Vries, B. and Post, J.G. (2010), "Building safety and human behavior in fire: A literature review", Fire Safety J., 45(1), 1-11. https://doi.org/10.1016/j.firesaf.2009.08.005
- Kuligowski, E.D., Peacock, R.D. and Hoskins, B.L. (2010), "A review of building evacuation models, 2nd edition", US Department of Commerce, National Institute of Standards and Technology (NIST), Gaithersburg, MD, U.S.A.
- Lee, H.Y. (2012), "Using a guiding network to determine efficient evacuation routes in a public building", J. Infrastructure Syst., 19(3), 243-251. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000127
- Leiserson, C.E. and Schardl, T.B. (2010), "A work-efficient parallel breadth-first search algorithm (or how to cope with the nondeterminism of reducers)", Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures, Santorini, Greece, June, 303-314.
- Li, M., Fu, J., Zhang, Y., Zhang, Z., Wang, S., Kong, H. and Mao, R. (2017), "An improved searching algorithm for indoor trajectory reconstruction", J. Distributed Sensor Networks, 13(11), 1550147717743697.
- Li, X. and Qin, W. (2012), "A crowd behavior model based on reciprocal velocity obstacle algorithm", Procedia Eng., 29, 2887-2893. https://doi.org/10.1016/j.proeng.2012.01.409
- Lo, S.M., Huang, H.C., Wang, P. and Yuen, K.K. (2006), "A game theory-based exit selection model for evacuation", Fire Safety J., 41(5), 364-369. https://doi.org/10.1016/j.firesaf.2006.02.003
- McGrattan, K., Klein, B., Hostikka, S. and Floyd, J. (2010), "Fire dynamics simulator (version 5), user's guide", NIST special publication, 1019(5), 1-186.
- Milke, J., Kodur, V. and Marrion, C. (2002), "An overview of fire protection in buildings", Federal Emergency Management Agency, Washington D.C., U.S.A.
- Nguyen, M.H., Ho, T.V. and Zucker, J.D. (2013), "Integration of Smoke Effect and Blind Evacuation Strategy (SEBES) within fire evacuation simulation", Simulation Modelling Practice and Theory, 36, 44-59. https://doi.org/10.1016/j.simpat.2013.04.001
- NIST (2010), Fire Dynamics; Fire Research Division, Washington D.C., U.S.A., www.nist.gov/el/fire-research-division-73300/firegov-fire-service/fire-dynamics.
- Owen, M., Galea, E.R. and Lawrence, P.J. (1996), "The EXODUS evacuation model applied to building evacuation scenarios", J. Fire Protection Eng., 8(2), 65-84. https://doi.org/10.1177/104239159600800202
- Pan, X., Han, C.S., Dauber, K. and Law, K.H. (2007), "A multi-agent-based framework for the simulation of human and social behaviors during emergency evacuations", Ai Society, 22(2), 113-132. https://doi.org/10.1007/s00146-007-0126-1
- Pelechano, N., Allbeck, J.M. and Badler, N.I. (2007), "Controlling individual agents in high-density crowd simulation", Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, U.S.A., January, 99-108
- Ronchi, E.P. and Nilsson, D. (2013), "Assessment of total evacuation systems for tall buildings: Literature Review", Fire Protection Research Foundation, Quincy, MA, U.S.A.
- Sagun, A., Anumba, C.J. and Bouchlaghem, D. (2013), "Designing buildings to cope with emergencies: Findings from case studies on exit preferences", Buildings, 3(2), 442-461. https://doi.org/10.3390/buildings3020442
- Schmidt, V. (1974), U.S. Patent No. 3,782,475, U.S. Patent and Trademark Office; Washington, D.C., U.S.A.
- Shestopal, V.O. and Grubits, S.J. (1994), "Evacuation model for merging traffic flows in multi-room and multi-story buildings", Fire Safety Science, 4, 625-632. https://doi.org/10.3801/IAFSS.FSS.4-625
- Shi, L., Xie, Q., Cheng, X., Chen, L., Zhou, Y. and Zhang, R. (2009), "Developing a database for emergency evacuation model", Build. Environ., 44(8), 1724-1729. https://doi.org/10.1016/j.buildenv.2008.11.008
- Shi, X., Ye, Z., Shiwakoti, N., Tang, D. and Lin, J. (2019), "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck", Physica A: Statistical Mechanics and its Applications, 522, 350-364. https://doi.org/10.1016/j.physa.2019.01.086
- Shiwakoti, N. and Sarvi, M. (2013), "Understanding pedestrian crowd panic: A review on model organism approach", J. Transport Geography, 26, 12-17. https://doi.org/10.1016/j.jtrangeo.2012.08.002
- Smith, G.A. (2013), "Knife-related injuries treated in United States emergency departments, 1990-2008", J. Emergency Medicine, 45(3), 315-323. https://doi.org/10.1016/j.jemermed.2012.11.092
- Song, W., Xu, X., Wang, B.H. and Ni, S. (2006), "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics", Physica A Stat. Mech. Appl., 363(2), 492-500. https://doi.org/10.1016/j.physa.2005.08.036
- Still, G.K. (2000), "Crowd Dynamics", Ph.D. Dissertation, University of Warwick, Coventry.
- Still, G.K. (2007), "Review of pedestrian and evacuation simulations", J. Critical Infrastruct., 3(3-4), 376-388. https://doi.org/10.1504/IJCIS.2007.014116
- Stout, B. (1996), Smart Moves: Intelligent Pathfinding, Game Developer Magazine, October.
- Tan, L., Hu, M. and Lin, H. (2015), "Agent-based simulation of building evacuation: Combining human behavior with predictable spatial accessibility in a fire emergency", Information Sciences, 295, 53-66. https://doi.org/10.1016/j.ins.2014.09.029
- Tang, F. and Ren, A. (2008), "Agent-based evacuation model incorporating fire scene and building geometry", Tsinghua Science and Technology, 13(5), 708-714. https://doi.org/10.1016/S1007-0214(08)70115-9
- Thompson, P., Lindstrom, H., Ohlsson, P. and Thompson, S. (2003), "Simulex: Analysis and changes for IMO compliance", Proceedings of 2nd International Conference: Pedestrian and Evacuation Dynamics, London, August, 173-184.
- Thomsen, J., Levitt, R.E., Kunz, J.C., Nass, C.I. and Fridsma, D.B. (1999), "A trajectory for validating computational emulation models of organizations", Comput. Math. Organization Theory, 5(4), 385-401. https://doi.org/10.1023/A:1009624719571
- Toyama, M.C., Bazzan, A.L. and Da Silva, R. (2006), "An agent-based simulation of pedestrian dynamics: From lane formation to auditorium evacuation", Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, May, 108-110.
- Wei-Guo, S., Yan-Fei, Y., Bing-Hong, W. and Wei-Cheng, F. (2006), "Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model", Physica A Stat. Mech. Appl., 371(2), 658-666. https://doi.org/10.1016/j.physa.2006.03.027
- Wei, X., Song, W., Lv, W., Liu, X. and Fu, L. (2014), "Defining static floor field of evacuation model in large exit scenario", Simul. Model. Practice Theory, 40, 122-131. https://doi.org/10.1016/j.simpat.2013.09.007
- Wright, A.J. (2007), "U.S. Patent No. 7,259,656", U.S. Patent and Trademark Office; Washington, D.C., U.S.A.
- Xie, X.Y., Ren, A.Z. and Zhou, X.Q. (2003), "Determination of the best evacuation route in high-rise building fire", J. Natural Disasters, 12(3), 75-80. https://doi.org/10.3969/j.issn.1004-4574.2003.03.012
- Yamamoto, K., Kokubo, S. and Nishinari, K. (2007), "Simulation for pedestrian dynamics by real-coded cellular automata (RCA)", Physica A Stat. Mech. Appl., 379(2), 654-660. https://doi.org/10.1016/j.physa.2007.02.040
- Yang, L.Z., Zhao, D.L., Li, J. and Fang, T.Y. (2005), "Simulation of the kin behavior in building occupant evacuation based on cellular automaton", Build. Environ., 40(3), 411-415. https://doi.org/10.1016/j.buildenv.2004.08.005
- Yang, X., Dong, H., Wang, Q., Chen, Y. and Hu, X. (2014), "Guided crowd dynamics via modified social force model", Physica A Stat. Mech. Appl., 411, 63-73. https://doi.org/10.1016/j.physa.2014.05.068
- Yuan, J.P., Fang, Z., Wang, Y.C., Lo, S.M. and Wang, P. (2009), "Integrated network approach of evacuation simulation for large complex buildings", Fire Safety J., 44(2), 266-275. https://doi.org/10.1016/j.firesaf.2008.07.004
- Zheng, X., Zhong, T. and Liu, M. (2009), "Modeling crowd evacuation of a building based on seven methodological approaches", Build. Environ., 44(3), 437-445. https://doi.org/10.1016/j.buildenv.2008.04.002
Cited by
- Interacting with VDL-based structured icons on crisis map for emergency coordination: Interactive design and experimental demonstration vol.70, 2021, https://doi.org/10.1016/j.displa.2021.102059