자동차산업에서 자기유변탄성체(Magneto-rheological Elastomer)의 응용

  • 정경호 (수원대학교 신소재공학과)
  • Published : 2019.03.31

Abstract

Keywords

References

  1. H. G. Busmann, B. Gunther, and U. Meyer, "Polymer matrix composites filled with nanoporous metal powders", Nanostructured Mater., 12, 531 (1999). https://doi.org/10.1016/S0965-9773(99)00176-2
  2. K. Yoshida, M. Kikuchi, J. H. Park and S. Yokota, "Fabrication of micro electro-rheological valves by micromachining and experiments", Sensors and Actuators A, 95, 227 (2002). https://doi.org/10.1016/S0924-4247(01)00730-0
  3. N. M. Wereley, L. Pang, and G. M. Kamath, "Idealized Hysteresis Modelling of Electrorheological and Magnetorhelogical Dampers", J of Intelligent Mater. Systems and Struc., 9, 642 (1998), https://doi.org/10.1177/1045389X9800900810
  4. F. D. Goncalves, J. H. Koo, M. Ahmadian, "A review of the state of the art in magnetorheological fluid technologies-Part 1: MR fluid and MR fluid models", The Shock and Vibration Digest, 38(3), 203 (2006). https://doi.org/10.1177/0583102406065099
  5. J. D. Carlson and M. R. Jolly,"MR fluid, foam and elastomer devices", Mechatronics, 10, 555 (2000). https://doi.org/10.1016/S0957-4158(99)00064-1
  6. H. X. Deng, X. L. Gong, and L. H. Wang, "Development of an adaptive tuned vibration absorber with magnetorheological elastomer, Smart Mater. Struct., 15(5), N111 (2006). https://doi.org/10.1088/0964-1726/15/5/N02
  7. P. Blom and L. Kari, "Smart audio frequency energy flow control by magneto-sensitive rubber isolators", Smart Mater. Struct., 17(1), 015043 (2008). https://doi.org/10.1088/0964-1726/17/1/015043
  8. A. S. Semisalova, N. S. Perov, G. V. Stepanov, E. Y. Kramarenko, and A. R. Khokhlov, "Strong magnetodielectric effects in magnetorheological elastomers, Soft Matter, 9, 11318 (2013). https://doi.org/10.1039/c3sm52523f
  9. J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, "Magnetorheological fluids: a review", Soft Matter, 7, 3701 (2011). https://doi.org/10.1039/c0sm01221a
  10. V. V. Sorokin, E. Ecker, G. V. Stepanov, M. Shamonin, G. J. Monkman, E. Y. Kramarenko, and A. R. Khokhlov, "Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers", Soft Matter, 10, 8765 (2014). https://doi.org/10.1039/C4SM01738B
  11. J. Rabinow, "The magnetic fluid clutch", Trans. Am. Inst. Electr. Engineers, 67, 1308 (1948). https://doi.org/10.1109/T-AIEE.1948.5059821
  12. A. Fuchs, Q. Zhang, J. Elkins, F. Gordaninejad, and C. Evrensel, "Development and characterization of magnetorheological elastomers", J. Appl. Polym. Sci., 105(5), 2497 (2007). https://doi.org/10.1002/app.24348
  13. I. Bica, "Compressibility modulus and principal deformations in magnetorheological elastomers: the effect of the magnetic field", J. Ind. Eng. Chem., 15, 773 (2009). https://doi.org/10.1016/j.jiec.2009.09.028
  14. G. Y. Zhou and Z. Y. Jiang, "Deformation in magnetorheological elastomer and elastomerferromagnet composite driven by a magnetic field", Smart Mater. Struct., 13(2), 309 (2004). https://doi.org/10.1088/0964-1726/13/2/009
  15. B. Ju, R. Tang, D. Zhang, B. Yang, M. Yu, and C. Liao, "Temperature dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field", J. Magnetism and Magnetic Mater., 374, 283 (2015). https://doi.org/10.1016/j.jmmm.2014.08.012
  16. J. H. Yoon, I. H. Yang, U. C. Jeong, K. H. Chung, J. Y. Lee, and J. E. Oh, "Investigation on variable shear modulus of magnetorheological elastomers based on natural rubber due to change of fabrication design", Polym. Eng. Sci., 53, 992 (2013). https://doi.org/10.1002/pen.23349
  17. J. Kaleta, M. Krolewicz, and D. Lewandowski, "Magnetomechanical properties of anisotropic and isotropic MR composites with thermoplastic elastomer matrices", Smart Mater. Struct., 20(8), 085006 (2011). https://doi.org/10.1088/0964-1726/20/8/085006
  18. H. K. Kim, H. S. Kim and Y. K. Kim, "Stiffness control of magnetorheological gels for adaptive tunable vibration absorber", Smart Mater. Struct., 26(1), 015016 (2017). https://doi.org/10.1088/1361-665X/26/1/015016
  19. J. H. Koo, A. Dawson, and H. J. Jung, "Characterization of actuation properties of magnetorheological elastomers with embedded hard magnetic particles", J. Intell. Mater. Syst. and Struct., 23(9), 1049 (2012). https://doi.org/10.1177/1045389X12439635
  20. G. Liao, X. Gong, S. Xuan, C. Kang, and L. Zong,"Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer", J. Intell. Mater. Syst. Struct., 23(1), 25 (2012). https://doi.org/10.1177/1045389X11429853
  21. W. Li, K. Kostides, and X. Zhang, "Development of a force sensor working with magnetorheological elastomers", 2009 IEEE/ASME Int. Conf. on Adv. Intell. Mechatronics, 233 (2009).
  22. L. Chen, X. Gong, W. Jiang, J. Yao, H. Deng, and W. Li,"Investigation on magnetorheological elastomers based on natural rubber", J. Mater. Sci., 42(14), 5483 (2007). https://doi.org/10.1007/s10853-006-0975-x
  23. J. Kaleta, M. Krolewicz, and D. Lewandowski, "Magnetomechanical properties of anisotropic and isotropic MR composites with thermoplastic elastomer matrices", Smart Mater. Struct., 20, 85006 (2011). https://doi.org/10.1088/0964-1726/20/8/085006
  24. J. Wu, X. Gong, Y. Fan, and H. Xia,"Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field", Smart Mater. Struct., 19(10), 105007 (2010). https://doi.org/10.1088/0964-1726/19/10/105007
  25. Y. Li, J. Li, W. Li, and H. Du,"A state of the art review on magnetorheological elastomer devices", Smart Mater. Struct., 23(12), 123001 (2014). https://doi.org/10.1088/0964-1726/23/12/123001
  26. Y. Wang, X. Zhang, J. Oh, and K. Chung,"Fabrication and properties of magnetorheological elastomer based on CR/ENR self-crosslinking blend", Smart Mater. Struct., 24(9), 095006 (2015). https://doi.org/10.1088/0964-1726/24/9/095006
  27. T. Gao, R. Xie, and K. Chung,"Microstructure and dynamic mechanical properties of magnetorheological elastomer based on ethylene/acrylic elastomer prepared using different manufacturing methods", Micro and Nano Letters, 13(7), 1026 (2018). https://doi.org/10.1049/mnl.2017.0372
  28. T. Gao, T. Kim, N. Kim, and K. Chung,"Zinc oxide catalyzed interfacial interaction of carbonyl iron particles in the AEM and its magneto induced properties", Chem. Letters, 47(7), 846 (2018). https://doi.org/10.1246/cl.180194
  29. M. Farshad and A. Benine,"Magnetoactive elastomer composites", Polym. Test., 23(3), 347 (2004). https://doi.org/10.1016/S0142-9418(03)00103-X
  30. M. Yu, S. Qi, J. Fu, P. Yang, and M. Zhu, "Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix", Smart Mater. Struct., 24(4), 045009 (2015). https://doi.org/10.1088/0964-1726/24/4/045009
  31. L. Ge, X. Gong, Y. Fan, and S. Xuan, "Preparation and mechanical properties of the MRE based on natural rubber/ rosin glycerin hybrid matrix", Smart Mater. Struct., 22(11), 115029 (2013). https://doi.org/10.1088/0964-1726/22/11/115029
  32. B. Na and K. Chung,"Effect of Precured EPDM on the Properties of MRE based on NR/EPDM Blend", Elastomers and Composites, 53(2), 67 (2018). https://doi.org/10.7473/EC.2018.53.2.67
  33. Y. Wang, X. Zhang, K. Chung, C. Liu, S. Choi, and H. Choi,"Formation of core-shell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior", Smart Mater. Struct., 25(11), 115028 (2016). https://doi.org/10.1088/0964-1726/25/11/115028
  34. Y. Ye, D. Zheng, X. Li, and S. Qu,"Examination of Electrical Conduction of Carbonyl Iron Powder Compacts", Materials Trans., 56(5), 696 (2015). https://doi.org/10.2320/matertrans.M2014311
  35. I. A. Brigadnov and A. Dorfmann,"Mathematical modeling of magneto-sensitive elastomers", Int. J of Solids and Struct., 40, 4659 (2003). https://doi.org/10.1016/S0020-7683(03)00265-8
  36. R. A. Landa, P. S. Antonel, M. M. Ruiz, O. E. Perez, A. Butera, G. Jorge, C. Oliveira, and R. Negri,"Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanopaticles and nanochains", J. Appl. Phys., 114, 213912 (2013). https://doi.org/10.1063/1.4839735
  37. K. L. Pickering, S. R. Khimi, and S. Ilanko, "The effect of silane coupling agent on iron sand for use in magnetorheological elastomers", Comps. Part A: Appl. Sci. Manuf., 68, 377 (2015). https://doi.org/10.1016/j.compositesa.2014.10.005
  38. C. Lee, S. Kwon, H. Choi, K. Chung, and J. Jung,"Enhanced MR performance of carbonyl iron/NR composite elastomer with gamma-ferrite additive", Colloid and Polymer Sci., 296, 1609 (2018). https://doi.org/10.1007/s00396-018-4373-0
  39. X. Qiao, X. Lu, W. Li, J. Chen, X. Gong, T. Yang, W. Li, K. Sun, and X. Chen, "Microstructure and magnetorheological properties of the thermoplastic MRE composites containing modified CIPs and poly(styrene-b-ehylene-ethylenepropylene-bstyrene) matrix", Smart Mater. Struct., 21(11), 115028 (2012). https://doi.org/10.1088/0964-1726/21/11/115028
  40. Y. Fan, X. Gong, W. Jiang, W. Zhang, B. Wei, and W. Li,"Effect of maleic anhydride on the damping property of magnetorheological elastomers", Smart Mater. Struct., 19(5), 055015 (2010). https://doi.org/10.1088/0964-1726/19/5/055015
  41. L. C. Davis,"Model of magnetorheological elastomer", J. Appl. Phys., 85, 3348 (1999). https://doi.org/10.1063/1.369682
  42. S. Sakaki, Y. Tsujici, M. Kawai, and T. Mitsumata, "Electric conductivity and dielectric breakdown behavior for polyurethane magnetic elastomers", J. Phys. Chem. B, 121, 1740 (2017). https://doi.org/10.1021/acs.jpcb.6b12875
  43. L. Chen, X. L. Gong, and W. H. Li,"Effect of carbon black on the mechanical performances of magnetorheological elastomers", Polymer Testing, 27(3), 340 (2008). https://doi.org/10.1016/j.polymertesting.2007.12.003
  44. T. Gao, B. Na, H. Choi, and K. Chung,"Effect of zinc oxide induced metal-ligand crosslink on the mechanical properties in the ethylene acrylic elastomers", Materials Letters, 214, 154 (2018). https://doi.org/10.1016/j.matlet.2017.11.125
  45. K. Chung, U. Jeong, and J. Oh,"Effect of Magnetic Field Input Cycle and Peptizer on the MR effect of MRE Based on NR", Polymer Eng. & Sci., 55(11), 2669 (2015). https://doi.org/10.1002/pen.24160
  46. S. Aziz, S. Mazlan, N. Ismail, M. Khairi, and N. Yunus,"Rheological properties of carbon nanotubes-reinforced magnetorheological elastomer", J. of Physics: Conf. Series, 795, 012074 (2017). https://doi.org/10.1088/1742-6596/795/1/012074
  47. T. Oguro, H. Endo, M. Kawai, and T. Mitsumata, "Magnetically-tunable rebound property for variable elastic devices mad of magnetic elastomer and polyurethane foam", Materials Research Express, 4(12), 126104 (2017). https://doi.org/10.1088/2053-1591/aa9d51
  48. B. Ju, M. Yu, J. Fu, Q. Yang, X. Liu, and X. Zheng,"A novel porous magnetorheological elastomer: Preparation and evaluation", Smart Mater. Strucu., 21(3), 035001 (2012). https://doi.org/10.1088/0964-1726/21/3/035001
  49. L. Ge, S. Xuan, G. Liao, T. Yin, and X. Gong, "Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties", Smart Mater. and Sci., 24(3), 037001 (2015). https://doi.org/10.1088/0964-1726/24/3/037001