참고문헌
- Allahverdizadeh, A., Naei, M.H. and Nikkhah Bahrami, M. (2008), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound Vibr., 310(4-5), 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
- Amir, S. (2016), "Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory", J. Mater. Des. Appl., 233(2), 197-208.
- Amir, S., Bidgoli, E.M.R. and Arshid, E. (2018a), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 1-15.
- Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018b), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 109963621879538.
- Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-magnetomechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates", Mech. Res. Commun., 84, 27-42. https://doi.org/10.1016/j.mechrescom.2017.06.002
- Arshid, E. and Khorshidvand, A.R. (2017), "Flexural vibrations analysis of saturated porous circular plates using differential quadrature method", Iran. J. Mech. Eng. Trans. ISME, 19(1), 78-100.
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007
- Azimi, S. (1988), "Free vibration of circular plates with elastic edge supports using the receptance method", J. Sound Vibr., 120(1), 19-35. https://doi.org/10.1016/0022-460X(88)90332-X
- Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bert, C.H.W., Jang, S.K. and Striz, A.G. (1989), "Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature", Comput. Mech., 5(2-3), 217-226. https://doi.org/10.1007/BF01046487
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: A review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31(2), 194-198. https://doi.org/10.1115/1.3629586
- Brush, D.O., Almroth, B.O. and Hutchinson, J.W. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911.
- Camier, C., Touze, C. and Thomas, O. (2009), "Non-linear vibrations of imperfect free-edge circular plates and shells", Eur. J. Mech.-A/Sol., 28(3), 500-515. https://doi.org/10.1016/j.euromechsol.2008.11.005
- Chen, C.S. (2005), "Nonlinear vibration of a shear deformable functionally graded plate", Compos. Struct., 68(3), 295-302. https://doi.org/10.1016/j.compstruct.2004.03.022
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025
- Civalek, O . (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020
- Decha-Umphai, K. and Mei, C. (1986), "Finite element method for non-linear forced vibrations of circular plates", Int. J. Numer. Meth. Eng., 23(9), 1715-1726. https://doi.org/10.1002/nme.1620230911
- Detournay, E. and Cheng, A.H.D. (1993), "Fundamentals of poroelasticity", Analy. Des. Meth., 113-171.
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017
- Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press.
- Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech., A/Sol., 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
- Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266
- Duc, N.D. and Ha, N. (2011), "The bending analysis of thin composite plate under steady temperature field", J. Sci. Math.- Phys., 27(2), 77-83.
- Duc, N.D. and Quan, T.Q. (2015), "Nonlinear dynamic analysis of imperfect functionally graded material double curved thin shallow shells with temperature-dependent properties on elastic foundation", J. Vibr. Contr., 21(7), 1340-1362. https://doi.org/10.1177/1077546313494114
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016
- Duc, N.D., Seung-Eock, K. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stress., 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623
- Duc, N., Dinh Nguyen, P. and Dinh Khoa, N. (2017), "Nonlinear dynamic analysis and vibration of eccentrically stiffened SFGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin-Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013
- Duc, N., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018), "Nonlinear dynamic response of functional graded porous plates on elastic foundation subjected to thermal and mechanical loads", J. Appl. Comput. Mech., 4(4), 245-259.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
- Ghorbanpour Arani, A. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., 28(2), 149-165. https://doi.org/10.12989/SCS.2018.28.2.149
- Ghorbanpour Arani, A., Haghparast, E. and Babaakbar Zarei, H. (2016), "Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field", Phys. B: Condens. Matt., 495, 35-49. https://doi.org/10.1016/j.physb.2016.04.039
- Ghorbanpour Arani, A., Haghparast, E. and Zarei, H.B. (2017b), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529
- Ghorbanpour Arani, A., Khoddami Maraghi, Z., Khani, M. and Alinaghian, I. (2017c), "Free vibration of embedded porous plate using third-order shear deformation and poroelasticity theories", J. Eng., 1-13.
- Ghorbanpour Arani, A., Maraghi, Z.K. and Ferasatmanesh, M. (2017a), "Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load", Struct. Eng. Mech., 63(1), 65-76. https://doi.org/10.12989/SEM.2017.63.1.065
- Hosseini-Hashemi, S. and Khorami, K. (2011), "Analysis of free vibrations of moderately thick cylindrical Shells made of functionally graded materials using differential quadrature method", Modar. Mech. Eng., 11(2), 93-106.
- Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2014), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000663
- Khorshidvand, A.R., Jabbari, M. and Eslami, M.R. (2012), "Thermoelastic buckling analysis of functionally graded circular plates integrated with piezoelectric layers", J. Therm. Stress., 35(8), 695-717. https://doi.org/10.1080/01495739.2012.688666
- Khorshidvand, A.R., Joubaneh, E.F., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor-actuator layers under uniform radial compression", Acta Mech., 225(1), 179-193. https://doi.org/10.1007/s00707-013-0959-2
- Kolahdouzan, F., Gorbanpour Arani, A. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRCmicro sandwich plate", Steel Compos. Struct., 26(3), 273-287. https://doi.org/10.12989/SCS.2018.26.3.273
- Krizhevsky, G. and Stavsky, Y. (1996), "Refined theory for vibrations and buckling of laminated isotropic annular plates", Int. J. Mech. Sci., 38(5), 539-555. https://doi.org/10.1016/0020-7403(95)00053-4
- Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech.-A/Sol., 52, 85-94.
- Leclaire, P., Horoshenlov, K.V. and Cummings, A. (2001), "Transverse vibrations of a thin rectangular porous plate saturated by a fluid", J. Sound Vibr., 247(1), 1-18. https://doi.org/10.1006/jsvi.2001.3656
- Leissa, A.W. (1969), Vibration of Plates, OHIO State Univ Columbus.
- Liew, K.M., Han, J.B. and Xiao, Z.M. (1996), "Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility", Int. J. Sol. Struct., 33(18), 2647-2658. https://doi.org/10.1016/0020-7683(95)00174-3
- Liew, K.M., Han, J.B., Xiao, Z.M. and Du, H. (1996), "Differential quadrature method for Mindlin plates on Winkler foundations", Int. J. Mech. Sci., 38(4), 405-421. https://doi.org/10.1016/0020-7403(95)00062-3
- Loghman, A. and Cheraghbak, A. (2018), "Agglomeration effects on electro-magneto-thermo elastic behavior of nano-composite piezoelectric cylinder", Polym. Compos., 39(5), 1594-1603. https://doi.org/10.1002/pc.24104
- Ma, L.S. and Wang, T.J. (2003a), "Axisymmetric post-buckling of a functionally graded circular plate subjected to uniformly distributed radial compression", Mater. Sci. For., 423-424, 719-724. https://doi.org/10.4028/www.scientific.net/msf.423-425.719
- Ma, L.S. and Wang, T.J. (2003b), "Nonlinear bending and postbuckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Sol. Struc., 40(13-14), 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5
- Ma, L.S. and Wang, T.J. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Sol. Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008
- Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006
- Mohammadimehr, M., Zarei, H.B., Parakandeh, A. and Arani, A. G. (2017), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., 64(3), 361-379. https://doi.org/10.12989/SEM.2017.64.3.361
- Ozdemir, Y.I. (2018), "Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation", Struct. Eng. Mech., 65(3), 213-222. https://doi.org/10.12989/SEM.2018.65.3.213
- Pham, T.V. and Nguyen, D.D. (2016), "Nonlinear stability analysis of imperfect three-phase sandwich laminated polymer nanocomposite panels resting on elastic foundations in thermal environments", VNU J. Sci.: Math. Phys., 32(1), 20-36.
- Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metalceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, CRC Press.
- Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mec.-A/Sol., 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Flu., 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
- Theodorakopoulos, D.D. and Beskos, D.E. (1994), "Flexural vibrations of poroelastic plates", Acta Mech., 103(1-4), 191-203. https://doi.org/10.1007/BF01180226
- Wang, Q., Quek, S.T., Sun, C.T. and Liu, X. (2001), "Analysis of piezoelectric coupled circular plate", Smart Mater. Struct., 10(2), 229. https://doi.org/10.1088/0964-1726/10/2/308
- Wang, X. (2008), "Changes in the natural frequency of a ferromagnetic rod in a magnetic field due to magnetoelastic interaction", Appl. Math. Mech., 29(8), 1023-1032. https://doi.org/10.1007/s10483-008-0806-x
- Wang, Y., Xu, R. and Ding, H. (2009), "Free axisymmetric vibration of FGM circular plates", Appl. Math. Mech., 30(9), 1077-1082. https://doi.org/10.1007/s10483-009-0901-x
- Wu, T., Wang, Y. and Liu, G. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Meth. Appl. Mech. Eng., 191(46), 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2
- Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053
- Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147
- Zong, Z., Zhang, Y. and Zhang, Y. (2009), Advanced Differential Quadrature Methods (18), Chapman and Hall/CRC.
피인용 문헌
- Axisymmetric free vibration and stress analyses of saturated porous annular plates using generalized differential quadrature method vol.25, pp.21, 2019, https://doi.org/10.1177/1077546319871132
- Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate vol.26, pp.17, 2019, https://doi.org/10.1177/1077546319899203
- Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory vol.21, pp.1, 2019, https://doi.org/10.1007/s43452-020-00150-x
- Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.235
- Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.115
- Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller vol.28, pp.2, 2019, https://doi.org/10.12989/sss.2021.28.2.195