참고문헌
- Abadi M, Agarwal A, Barham P, et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Software available from tensorflow.org
- Carpenter B, Gelman A., Hoffman MD, et al. (2017). Stan: a probabilistic programming language, Journal of Statistical Software, 76.
- Dickey JM and Lientz BP (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain, The Annals of Mathematical Statistics, 41, 214-226. https://doi.org/10.1214/aoms/1177697203
- Faulkenberry TJ (2018). Computing Bayes factors to measure evidence from experiments: an extension of the BIC approximation, Biometrical Letters, 55, 31-43. https://doi.org/10.2478/bile-2018-0003
- Gabry J and Mahr T (2018). Bayesplot: Plotting for Bayesian Models, R package version 1.6.0. Available from: https://CRAN.R-project.org/package=bayesplot
- Gelfand AE and Smith AFM (1990). Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Gigerenzer G (2004). Mindless statistics, The Journal of Socio-Economics, 33, 587-606. https://doi.org/10.1016/j.socec.2004.09.033
- Gilks WR, Thomas A, and Spiegelhalter DJ (1994). A language and program for complex Bayesian modelling, The Statistician, 43, 169-177. https://doi.org/10.2307/2348941
- Golding N (2018). greta: Simple and Scalable Statistical Modelling in R, R package version 0.3.0.9001. Available from: https://github.com/greta-dev/greta
- Hoekstra R, Morey RD, Rouder JN, and Wagenmakers EJ (2014). Robust misinterpretation of confidence intervals, Psychonomic Bulletin & Review, 21, 1157-1164. https://doi.org/10.3758/s13423-013-0572-3
- Hoel PG (1984). Introduction to Mathematical Statistics (5th ed), John Wiley & Sons, New York.
- JASP Team (2018). JASP (Version 0.9)[Computer software]. Available from: https://jasp-stats.org/
- Jeffreys H (1961). The Theory of Probability (3rd ed), Oxford University Press, Oxford, UK.
- Kass RE and Raftery AE (1995). Bayes factors, Journal of the American Statistical Association, 90, 773-795. https://doi.org/10.1080/01621459.1995.10476572
- Killeen PR (2007). Replication statistics as a replacement for significance testing: best practices in scientific decision-making, Best Practices in Quantitative Methods, (Osborne JW ed), SAGE Publications, Inc., Thousand Oaks, CA.
- Klugkist I, Kato B, and Hoijtink H (2005). Bayesian model selection using encompassing priors, Statistica Neerlandica, 59, 57-69. https://doi.org/10.1111/j.1467-9574.2005.00279.x
- Kooperberg C (2018). polspline: Polynomial Spline Routines, R package version 1.1.13. Available from: https://CRAN.R-project.org/package=polspline
- Kooperberg C and Stone CJ (1992). Logspline density estimation for censored data, Journal of Computational and Graphical Statistics, 1, 301-328. https://doi.org/10.2307/1390786
- Lunn DJ, Thomas A, Best N, and Spiegelhalter D (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility, Statistics and Computing, 10, 325-337. https://doi.org/10.1023/A:1008929526011
- Masson MEJ (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing, Behavior Research Methods, 43, 679-690. https://doi.org/10.3758/s13428-010-0049-5
- Morey RD and Rouder JN (2011). Bayes factor approaches for testing interval null hypotheses, Psychological Methods, 16, 406-419. https://doi.org/10.1037/a0024377
- Morey RD and Rouder JN (2018). BayesFactor: Computation of Bayes Factors for Common Designs, R package version 0.9.12-4.2. Available from: https://CRAN.R-project.org/package=BayesFactor
- Neal R (2011). MCMC Using Hamiltonian Dynamics, (Brooks S, Gelman A, Jones G, and Meng X eds), Handbook of Markov Chain Monte Carlo, Chapman and Hall/CRC, 116-162.
- Oakes M (1986). Statistical Inference: A commentary for the Social and Behavioural Sciences, John Wiley & Sons, Chicester
- Plummer M (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.
- Raftery AE (1995). Bayesian model selection in social research, Sociological Methodology 25, 111-163. https://doi.org/10.2307/271063
- R Core Team (2018). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Available from: https://www.R-project.org/
- Richard FD, Bond CF, and Stokes-Zoota JJ (2003). One hundred years of social psychology quantitatively described, Review of General Psychology, 7, 331-363. https://doi.org/10.1037/1089-2680.7.4.331
- Rouder JN, Speckman PL, Sun D, Morey RD, and Iverson G (2009). Bayesian t tests for accepting and rejecting the null hypothesis, Psychonomic Bulletin & Review, 16, 225-237. https://doi.org/10.3758/PBR.16.2.225
- Stone CJ, Hansen MH, Kooperberg C, and Truong YK (1997). Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture, The Annals of Statistics, 25, 1371-1470. https://doi.org/10.1214/aos/1031594728
- Wagenmakers J, and Wetzels R, Borsboom D, and van der Maas HLJ (2011). Why psychologists must change the way they analyze their data: the case of psi: Comment on Bem (2011), Journal of Personality and Social Psychology, 100, 426-432. https://doi.org/10.1037/a0022790
- Wagenmakers EJ, Lodewyckx T, Kuriyal H, and Grasman R (2010). Bayesian hypothesis testing for psychologists: a tutorial on the Savage-Dickey method, Cognitive Psychology, 60, 158-189. x https://doi.org/10.1016/j.cogpsych.2009.12.001
- Wang M (2017). Mixtures of g-priors for analysis of variance models with a diverging number of parameters, Bayesian Analysis, 12, 511-532. https://doi.org/10.1214/16-BA1011
- Wetzels R, Grasman RPPP, and Wagenmakers EJ (2010). An encompassing prior generalization of the Savage-Dickey density ratio, Computational Statistics & Data Analysis, 54, 20942102. https://doi.org/10.1016/j.csda.2010.03.016
- Wetzels R, Raaijmakers JGW, Jakab E, and Wagenmakers EJ (2009). How to quantify support for and against the null hypothesis: a flexible WinBUGS implementation of a default Bayesian t test, Psychonomic Bulletin & Review, 16, 752-760. https://doi.org/10.3758/PBR.16.4.752
- Zellner A and Siow A (1980). Posterior odds ratios for selected regression hypotheses, Trabajos de Estadistica Y de Investigacion Operativa, 31, 585-603. https://doi.org/10.1007/BF02888369