Embryonic Development of Fertilized Eggs of Convict Grouper (Hyporthodus septemfasciatus) ♀×Giant Grouper (Epinephelus lanceolatus) ♂

능성어 (Hyporthodus septemfasciatus) ♀×대왕바리 (Epinephelus lanceolatus) ♂ 수정란의 난발생

  • Received : 2019.03.15
  • Accepted : 2019.03.25
  • Published : 2019.03.31

Abstract

The embryonic development and hatchability of the artificially fertilized eggs of convict grouper (Hyporthodus septemfasciatus) ♀${\times}$giant grouper (Epinephelus lanceolatus) ♂ (CGGG) were compared to those of the maternal pure species (convict grouper ♀${\times}$♂, CG) to establish a novel grouper hybrid for aquaculture industry. The fertilized eggs were divided into nine 5-L beakers (3,000~5,000 eggs/beaker) filled with UV sterilized seawater and incubated at a temperature range of $23.5{\sim}24.8^{\circ}C$ (32.1~32.8 psu). The percentages of fertilization and hatching of CGGG were $69.4{\pm}1.5%$ and $59.0{\pm}5.1%$, respectively and were significantly lower than those of CG (p<0.05). The CGGG proceeded normal embryonic development similar to that of CG, but showed an irregular cleavage, immature embryonic body and spinal deformity in hatched larvae. The incubation time from fertilization to hatching of CGGG was 31 hrs, which was approximately 2 hrs slower than that of CG. Our study provided the possibility of mass production of grouper hybrid CGGG larvae.

이번 연구에서 바리과 어종의 새로운 교잡종을 생산하기 위한 연구의 일환으로 능성어 (Hyporthodus septemfasciatus) ♀${\times}$대왕바리 (Epinephelus lanceolatus) ♂ (CGGG)의 발생 양상, 부화율, 기형 발생률 그리고 부화 소요시간을 조사하고, 교잡종의 모계어종의 순종 (능성어 ♀${\times}$♂, CG)과 비교하였다. CGGG와 CG 수정란은 자외선 살균 해수가 채워진 5-L 용량의 비이커 9개에 3,000~5,000개/비이커의 밀도로 수용되었으며, 발생 기간 중 수온은 $23.5{\sim}24.8^{\circ}C$ 그리고 염분은 32.1~32.8 ppt 였다. CGGG의 수정률과 부화율은 각각 $69.4{\pm}1.5%$$59.0{\pm}5.1%$로서 CG에 비해 유의하게 낮았다 (p<0.05). CGGG는 비균등 난할, 배체 체형 기형 그리고 부화자어의 척추 기형이 높게 출현한 것을 제외하고, CG와 동일한 난발생 양상을 보였다. CGGG의 부화까지 소요 시간은 CG에 비해 약 2시간 느렸다(p<0.05). 이상의 결과에서 CGGG는 수정률, 부화율 그리고 기형률 등 발생능력이 CG에 비해 낮았지만 부화자어의 대량생산이 가능할 것으로 판단된다.

Keywords

References

  1. Bartley, D.M., K. Rana and A.J. Immink. 2001. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fish., 10: 325-337. https://doi.org/10.1023/A:1016691725361
  2. Bermudes, M. and A.J. Ritar. 1999. Effects of temperature on the embryonic development of the striped trumpeter (Latris lineata Bloch and Schneider, 1801). Aquaculture, 176: 245-255. https://doi.org/10.1016/S0044-8486(99)00117-9
  3. Bonnet, E., A. Fostier and J. Bobe. 2007. Characterization of rainbow trout egg quality: A case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology, 67: 786-794. https://doi.org/10.1016/j.theriogenology.2006.10.008
  4. Chen, Z.-F., Y.-S. Tian, P.-F. Wang, J. Tang, J.-C. Liu, W.-H. Ma, W.-S. Li, X.-M. Wang and J.-M. Zhai. 2018. Embryonic and larval development of a hybrid between kelp grouper Epinephelus moara male$\times$giant grouper E. lanceolatus female using cryopreserved sperm. Aquacult. Res., 49: 1407-1413. https://doi.org/10.1111/are.13591
  5. Chevassus, B. 1983. Hybridization in fish. Aquauclture, 33: 245-262. https://doi.org/10.1016/0044-8486(83)90405-2
  6. Ch'ng, C.L. and S. Senoo. 2008. Eggs and larval development of a new hybrid grouper, tiger grouper Epinephelus fuscoguttatus$\times$giant grouper E. lanceolatus. Aquacult. Sci., 56: 505-512.
  7. Cho, J.K., C.G. Hong, J.Y. Park, M.H. Son, C.K. Park and J.M. Park. 2015. Effects of water temperature and salinity on the egg development and larvae of sevenband grouper, Epinephelus septemfasciatus. Korean J. Ichthyol., 27: 21-25.(in Korean)
  8. Finn, R.N. 2007. The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat. Toxicol., 81: 337-354. https://doi.org/10.1016/j.aquatox.2006.12.021
  9. Glamuzina, B., V. Kozul, P. Tutman and B. Skaramuca. 1999. Hybridization of Mediterranean groupers: Epinephelus marginatus male$\times$E. aeneus female and early development. Aquacult. Res., 30: 626-628.
  10. Glamuzina, B., N. Glavic, B. Skaramuca, V. Kozul and P. Tutman. 2001. Early development of the hybrid Epinephelus costae male$\times$E. marginatus female. Aquaculture, 198: 55-61. https://doi.org/10.1016/S0044-8486(00)00511-1
  11. Haddy, J.A. and N.W. Pankhurst. 2000. The effects of salinity on reproductive development, plasma steroid levels, fertilisation and egg survival in black bream Acanthopagrus butcheri. Aquaculture, 188: 115-131. https://doi.org/10.1016/S0044-8486(00)00326-4
  12. Hano, T., Y. Oshima, S.G. Kim, H. Satone, Y. Oba, T. Kitano, S. Inoue, Y. Shimasaki and T. Honjo. 2007. Tributyltin causes abnormal development in embryos of medaka, Oryzias latipes. Chemosphere, 69: 927-933. https://doi.org/10.1016/j.chemosphere.2007.05.093
  13. Heemstra P.C. and J.E. Randall. 1993. FAO Species Catalogue Vol. 16 Groupers of the world (family Serranidae, subfamily Epinephelinae) An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fish Synopsis, No. 125. FAO, Rome, pp. 227-228.
  14. Kaschner, K., K. Kesner-Reyes, C. Garilao, J. Rius-Barile, T. Rees and R. Froese. 2016. AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication, www.aquamaps.org, Version 08/2016.
  15. Keinanen, M., C. Tigerstedt, P. Kalax and P.J. Vuorinen. 2003. Fertilization and embryonic development of whitefish (Coregonus lavaretus lavaretus) in acidic low-ionic-strength water with aluminum. Ecotoxicol. Environ. Saf., 55: 314-329. https://doi.org/10.1016/S0147-6513(02)00128-8
  16. Kim, B.H., K.M. Kim, Y.D. Lee, C.B. Song and S. Rho. 1997. Reproductive biology of the sevenband grouper, Epinephelus septemfasciatus. I. The effect of HCG on ovulation induction. J. Aquauclt., 10: 55-61.(in Korean)
  17. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.K. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Publishing Co., Seoul. pp. 276-286.(in Korean)
  18. Kiriyakit, A., W.G. Gallardo and A.N. Bart. 2011. Successful hybridization of groupers(Epinephelus coioides$\times$Epinephleus lanceolatus) using cryopreserved sperm. Aquaculture, 320: 106-112. https://doi.org/10.1016/j.aquaculture.2011.05.012
  19. Klumpp, D.W. and H. Von Westernhagen. 1995. Biological effects of pollutants in Australian tropical coastal waters: embryonic malformations and chromosomal aberrations in developing fish eggs. Mar. Pollut. Bull., 30: 158-165. https://doi.org/10.1016/0025-326X(94)00124-R
  20. Koh, I.C.C., S.R.M. Shaleh, N. Akazawa, Y. Oota and S. Senoo. 2010. Egg and larval development of a new hybrid orange-spotted grouper Epinephelus coioides$\times$giant grouper E. lanceolatus. Aquacult. Sci., 58: 1-10.
  21. Koo, T.S.Y. and M.L. Johnston. 1978. Larva deformity in striped bass, Morone saxatilis (walbaum), and blueback herring, Alosa aestivalis(mitchill), due to heat shock treatment of developing eggs. Environ. Pollut., 16: 137-149. https://doi.org/10.1016/0013-9327(78)90128-3
  22. Lee, Y.D. and K.M. Go. 2003. Aquatic industrialization by development of reproductive technology of sevenband grouper, Epinephelus septemfasciatus. Ministry of Oceans and Fisheries. pp. 99.(in Korean)
  23. Lee, Y.D., Y.B. Song, B.S. Lim, S.R. Oh. and H.B. Kim. 2008. Grouper aquaculture research in Jeju Island, Bull. of Mar. Environ. Res. Inst. 32: 49-60.(in Korean)
  24. Liu, Q.H., Z.Z. Xiao, X.Y. Wang, S.H. Xu, S.G. Guan, C.A. Xu, H.S. Zhang and J. Li. 2016. Sperm cryopreservation in different grouper subspecies and application in interspecific hybridization. Theriogenology, 85: 1399-1407. https://doi.org/10.1016/j.theriogenology.2015.12.023
  25. Noh, C.H., K.S. Kim, J.G. Myoung, J.K. Cho, N.J. Yun, H.G. Lim and I.C. Bang. 2015. The hatchability of fertilized eggs of interspecific hybrid between red spotted grouper(Epinephelus akaara) and brown-marbled grouper (E. fuscoguttatus). Korean J. Ichthyol., 27: 16-20.(in Korean)
  26. Pierre, S., S. Gaillard, N. Prevot-Dalvise, J. Aubert, O. Rostaing-Capaillon, D. Leung-Tack and J.P. Grillasca. 2008. Grouper aquaculture: Asian success and Mediterranean trials. Aqua. Conserv.: Mar. Freshw. Ecosyst., 18: 297-308. https://doi.org/10.1002/aqc.840
  27. Randall, D.J. and T.K.N. Tsui. 2002. Ammonia toxicity in fish. Mar. Pollut. Bull., 45: 17-23. https://doi.org/10.1016/S0025-326X(02)00227-8
  28. Sadovy, Y.J., T.J. Donaldson, T.R. Graham, F. McGilvray, G.J. Muldoon, M.J. Phillips, M.A. Rimme, A. Smith and B. Yeeting. 2003. While stocks last: The live reef food fish trade. Asian Development Bank, Manila. pp. 95.
  29. Song, Y.B., H.J. Baek, H.B. Kim, K. Soyano, S.J. Kim and Y.D. Lee. 2008. Induction of maturation and ovulation with HCG treatment in the sevenband grouper Epinephelus septemfasciatus. Korean J. Ichthyol., 21: 96-101.(in Korean)
  30. Van Der Wal, E.J. 1985. Effects of temperature and salinity on the hatch rate and survival of Australian bass (Macquaria novemaculeata) eggs and yolk-sac larvae. Aquaculture, 47: 239-244. https://doi.org/10.1016/0044-8486(85)90070-5
  31. Vatanakul, V., J. Kongkumnerd, S. Rojanapitayakul, R. Yashiro and P. Panichasuke. 1995. Brood stock development of giant grouper Epinephelus lanceolatus, Library, enaca, pp. 1-6.
  32. Von Westernhagen, H. 1988. 4 Sublethal effects of pollutants on fish eggs and larvae. Fish Physiol. In: Hoar, W.S. and D.J. Randall(eds.), Academic Press, London, pp. 253-346.
  33. Zhang, Z., J. Hu, H. Zhen, X. Wu and C. Huang. 2008. Reproductive inhibition and transgenerational toxicity of triphenyltin on medaka (Oryzias latipes) at environmentally relevant levels. Environ. Sci. Technol., 42: 8133-8139. https://doi.org/10.1021/es801573x
  34. Zelennikov, O.V. 1997. The effect of acidification on oogenesis of rainbow trout during sex differentiation. J. Fish Biol., 50: 18-21. https://doi.org/10.1111/j.1095-8649.1997.tb01337.x