DOI QR코드

DOI QR Code

Clay Mineral Characteristics of 420 MV (Mud Volcano) in Beaufort Sea, Arctic Ocean

북극 보퍼트해 420 MV (진흙화산)의 점토광물 특성

  • Jang, Jeong Kyu (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 장정규 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2019.02.12
  • Accepted : 2019.03.28
  • Published : 2019.03.31

Abstract

Clay minerals, a major component of mud volcano (MV) sediments, are expected to provide important information for characterizing mud volcano formation mechanisms, but clay minerals have rarely been studied. The purpose of this study is to investigate the characteristics of 420 MV and surrounding marine sediments. Clay minerals and grain size were analyzed for 8 box cores from 420 MV and Mackenzie Trough. The relative proportions of the four major clay minerals in the Mackenzie Trough are almost constant in the order of illite, chlorite, kaolinite, and smectite, regardless of the distance from the Mackenzie River. However, the grain size tends to become fining as they move away from the Mackenzie River. Comparing the clay mineral characteristics of river (Colville River, Kuparuk River, Sagavanirktok River, Canning River, Mackenzie River) sediments entering the Beaufort Sea in order to determine the origin of the Mackenzie Trough and 420 MV sediments, the sediments of the Mackenzie Trough are characterized mainly by the Mackenzie River with a low ratio of smectite/illite and a high ratio of kaolinite/chlorite. In 420 MV sediments, the contents of clay minerals decrease in the order of illite, kaolinite, chlorite, and smectite, and the grain size with depth is almost constant. The content of smectite and coarse sediments is about two times higher than the reference core. No river with higher kaolinite content than chlorite exists in the Beaufort Sea, and the ratio of smectite/illite to kaolinite/chlorite is different from the reference core such as the ratio of the Mackenzie River. Compared to the reference core, the high contents of coarse sediments and the constant grain size with depth might be attributed to the ejection by MV. The reference core is interpreted as originating from Mackenzie River, and sediment of 420 MV is interpreted as originating from eruption of MV.

점토광물은 진흙화산(MV)을 구성하는 중요 광물로서, 진흙화산의 특성 및 형성 메커니즘을 밝히는 데에 중요한 정보를 제공할 수 있을 것으로 기대되지만, 이에 대한 연구는 거의 수행된 바가 없다. 본 연구에서는 북극 보퍼트해 420 MV와 주변 해역 퇴적물들의 점토광물학적 차이를 규명하여, 진흙화산의 특성 및 형성과 점토광물과의 관계를 규명하고자 하였다. 420 MV와 맥켄지곡에서 8개의 박스 코어에 대해 점토광물과 입도 분석을 실시하였다. 맥켄지곡의 4가지 주요 점토광물의 상대적인 함량비는 맥켄지강과의 거리에 상관없이 일라이트, 녹니석, 카올리나이트, 스멕타이트 순으로 거의 일정하지만, 입도는 맥켄지강으로부터 멀어질수록 점점 세립화하는 경향을 나타낸다. 맥켄지곡의 퇴적물들은 주로 스멕타이트/일라이트의 비가 낮고 카올리나이트/녹니석의 비가 높은 맥켄지강의 특징을 가진다. 420 MV의 퇴적물은 점토광물의 함량이 일라이트, 카올리나이트, 녹니석, 스멕타이트 순으로 감소하며, 깊이에 따른 입도가 거의 일정하다. 스멕타이트와 조립질 퇴적물의 함량은 비교 코어보다 약 2배 높다. 녹니석보다 카올리나이트의 함량이 높은 강은 보퍼트해 내에서는 연구된 결과가 없으며, 맥켄지강과 스멕타이트/일라이트, 카올리나이트/녹니석의 비가 같은 비교 코어와 구분된다. 비교 코어보다 많은 조립질 퇴적물과 깊이에 따라 일정한 입도는 MV에 의한 분출로 인한 것으로 유추된다. 비교 코어의 퇴적물은 맥켄지강 기원, 420 MV의 퇴적물은 MV의 분출에 의한 것으로 해석된다.

Keywords

References

  1. Batchelor, C.L., Dowdeswell, J.A., and Pietras, J.T. (2013) Seismic stratigraphy, sedimentary architecture and palaeo-glaciology of the Mackenzie Trough: Evidence for two Quaternary ice advances and limited fan development on the western Canadian Beaufort Sea margin. Quaternary Science Reviews, 65, 73-87. https://doi.org/10.1016/j.quascirev.2013.01.021
  2. Baumann, K.-H., Lackschewitz, K.S., Mangerud, J., Spielhagen, R.F., Wolf-Welling, T.C.W., Henrich, R., and Kassens, H. (1995) Reflection of Scandinavian ice sheet fluctuations in Norwegian Sea sediments during the last 150,000 years. Quaternary Research, 43, 185-197. https://doi.org/10.1006/qres.1995.1019
  3. Blasco, S., Bennett, R., Brent, T., Burton, M., Campbell, P., Carr, E., Covill, R., Dallimore, S., Davies, E., Hughes-Clarke, J., Issler, D., Leonard, L., MacKillop, K., Mazzotti, S., Patton, E., Rogers, G., Shearer, J., and White, M. (2013) 2010 State of knowledge: Beaufort Sea seabed geohazards associated with offshore hydrocarbon development. Geological Survey of Canada, Open File 6989, 340p.
  4. Biscaye, P.E., (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America, Bullentin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  5. Bonini, M. (2008) Elliptical mud volcano caldera as stress indicator in an active compressional setting (Nirano, Pede-Apennine margin, northern Italy). Geology, 36, 131-134. https://doi.org/10.1130/G24158A.1
  6. Bonini, M. (2012) Mud volcanoes: Indicators of stress orientation and tectonic controls. Earth-Science Reviews, 115, 121-152. https://doi.org/10.1016/j.earscirev.2012.09.002
  7. Boswell, R. and Collett, T.S. (2011) Current perspectives on gas hydrate resources. Energy and Environmental Science, 4, 1206-1215. https://doi.org/10.1039/C0EE00203H
  8. Bredehoeft, J.D. and Hanshaw, B.B. (1968) On the maintenance of anomalous fluid pressures: Thick sedimentary sequences. Geological Society of America Bulletin, 79, 1097-1106. https://doi.org/10.1130/0016-7606(1968)79[1097:OTMOAF]2.0.CO;2
  9. Clark, D.L. and Hanson, A. (1983). Central Arctic Ocean sediment texture: A key to ice transport mechanism. In: Molnia, B.F. (ed.), Glacial-Marine Sedimentation. Springer, Boston, MA, 301-330pp.
  10. Dimitrov, L.I. (2002) Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59, 49-76. https://doi.org/10.1016/S0012-8252(02)00069-7
  11. Etiope, G. (2015) Natural Gas Seepage. The Earth's Hydrocarbon Degassing. Springer International Publishing, Switzerland, 199p.
  12. Etiope, G. and Milkov, A.V. (2004) A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environmental Geology, 46, 997-1002. https://doi.org/10.1007/s00254-004-1085-1
  13. Gamboa, A., Montero-Serrano, J.C., St-Onge, G., Rochon, A., and Desiage, P.A. (2017) Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf Canadian Arctic. Geochemistry, Geophysics, Geosystems, 18, 488-512. https://doi.org/10.1002/2016GC006477
  14. Ginsburg, G.D., Milkov, A.V., Soloviev, V.A., Egorov, A.V., Cherkashev, G.A., Vogt, P.R., Crane, K., Lorenson, T.D., and Khutorshkoy, M.D. (1999) Gas hydrate accumulation at the Hakon Mosby Mud Volcano. Geo-Marine Letters, 19, 57-67. https://doi.org/10.1007/s003670050093
  15. Gordeev, V.V., Martin, J.M., Sidorov, I.S., and Sidorova, M.V. (1996) A reassessment of the Eurasian River input of water, sediment, major elements, and nutrients to the Arctic Ocean. American Journal of Science, 296, 664-691. https://doi.org/10.2475/ajs.296.6.664
  16. Gretener, P. (1985) The national conference on earth science, Banff, November 5-9, 1984: "Geopressures and Hydrocarbon Occurences". Bulletin of Canadian Petroleum Geology, 33, 269-273.
  17. Guliyev, I.S. and Feizullayev, A.A. (1997) All About Mud Volcanoes. Nafta Press, Baku, 52p.
  18. Hebbeln, D., Henrich, R., and Baumann, K.-H. (1998) Paleoceanography of the last interglacial/glacial cycle in the Polar North Atlantic. Quaternary Science Review, 17, 125-153. https://doi.org/10.1016/S0277-3791(97)00067-X
  19. Hensen, C., Wallmann, K., Schmidt, M., Ranero, C.R., and Suess, E. (2004) Fluid expulsion related to mud extrusion off Costa Rica - A window to the subducting slab. Geology, 32, 201-204. https://doi.org/10.1130/G20119.1
  20. Hill, P.R., Blasco, S.M., Harper, J.R., and Fissel, D.B. (1991) Sedimentation on the Canadian Beaufort shelf. Continental Shelf Research, 11, 821-842. https://doi.org/10.1016/0278-4343(91)90081-G
  21. Holems, R.M., McClelland, J.W., Peterson, B.J., Shiklomanov, I.A., Shiklomanov, A.I., Zhulidov, A.V., Gordeev, V.V., and Bobrovitskaya, N.N. (2002) A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Global Biogeochemical Cycles, 16, 1849-1862.
  22. Jakobsson, M., Grantz, A., Kristoffersen, Y., and Macnab, R. (2003) Physiographic provinces of the Arctic Ocean seafloor. Geological Society of America Bulletin, 115, 1443-1455. https://doi.org/10.1130/B25216.1
  23. Jakubov, A., All-Zade, A., and Zehnalov, M. (1971) Mud Volcanoes of the Azerbaijan SSR. Publiching House of the Academy of Sciences of the Azerbaijan SSR, Baku, 256p.
  24. Jin, Y.K. and Shipboard Scientific Party (2018) ARA08C Cruise Report: 2017 Korea-Canada-USA Beaufort Sea Research Program. Korea Polar Research Institute. 214p.
  25. Kholodov, V.N. (2002) Mud volcanoes, their distribution regularities and genesis: Communication 1. Mud volcanic provinces and morphology of mud volcanoes. Lithology and Mineral Resources, 37, 197-209. https://doi.org/10.1023/A:1015425612749
  26. Kobayashi, D., Yamamoto, M., Irino, T., Nam, S., Park, Y., Harada, N., Nagashima, K., Chikta, K., and Saitoh, S. (2016) Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period. Polar Science, 10, 519-531. https://doi.org/10.1016/j.polar.2016.07.005
  27. Koo, H., Lee, Y., Kim, S., and Cho, H. (2018) Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud. Geosciences Journal, 22, 989-1000. https://doi.org/10.1007/s12303-018-0019-y
  28. Kopf, A.J. (2002) Significance of mud volcanism. Reviews of Geophysics, 40, 2-1-2-52.
  29. Kuijipers, A., Knutz, P., and Moros, M., (2014) Ice-Rafted Debris (IRD). In: Harff J., Meschede M., Petersen S., and Thiede J. (eds.), Encyclopedia of Marine Geosciences. Springer, Dordrecht, 1-7pp.
  30. Kvenvolden, K.A. (1988), Methane hydrate-A major reservoir of carbon in the shallow geosphere? Chemical Geology, 71, 41-51. https://doi.org/10.1016/0009-2541(88)90104-0
  31. Mazzini, A. and Etiope, G. (2017) Mud volcanism: An updated review. Earth-Science Reviews, 168, 81-112. https://doi.org/10.1016/j.earscirev.2017.03.001
  32. Mazzini, A., Ivanov, M.K., Parnell, J., Stadnitskaia, A., Cronin, B.T., Poludetkina, E., Mazurenko, L., and van Weering, T.C.E. (2004). Methane-related authigenic carbonates from the Black Sea: Geochemical characterisation and relation to seeping fluids. Marine Geology, 212, 153-181. https://doi.org/10.1016/j.margeo.2004.08.001
  33. Mazzini, A., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T., and Banks, D. (2009) When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology, 26, 1704-1715. https://doi.org/10.1016/j.marpetgeo.2008.11.003
  34. Mhammedi, N.A., Moumni, B.E., Hmaidi, A.E., Raissouni, A., and Arrim, A.E. (2008) Mineralogical and geochemical study of mud volcanoes in north Moroccan atlantic margin. African Journal of Environmental Science and Technology, 2, 387-396.
  35. Milkov, A.V., Sassen, R., Novikova, I., and Mikhailov, E. (2000) Gas hydrates at minimum stability water depths in the Gulf of Mexico: Significance to geohazard assessment. Gulf Coase Association of Geological Societies Transactions, L, 217-224.
  36. Milkov, A.V. (2004) Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Science Reviews, 66, 183-197. https://doi.org/10.1016/j.earscirev.2003.11.002
  37. Naidu, A.S. and Mowatt, T.C. (1983) Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geological Society of America Bulletin, 94, 841-854. https://doi.org/10.1130/0016-7606(1983)94<841:SADPOC>2.0.CO;2
  38. Olariu, C. and Bhattacharya, J.P. (2006) Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76, 212-233. https://doi.org/10.2110/jsr.2006.026
  39. Paull, C.K., Dallimore, S.R., Caress, D.W., Gwiazda, R., Melling, H., Riedel, M., Jin, Y.K., Hong, J.K., Kim, Y.G., Graves, D., Sherman, A., Lundsten., E., Anderson, K., Lundsten, L., Villinger, H., Kopf, A.S., Johnson, B., Clarke., J.H., Blasco, S., Conway, K., Neelands, P., Thomas, H., and Cote, M. (2015) Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochemistry, Geophysics, Geosystems, 16, 3160-3181. https://doi.org/10.1002/2015GC005928
  40. Paull, C.K., Ussler, W., Dallimore, S.R., Blasco, S.M., Lorenson, T.D., Melling, H., Medioli, B.E., Nixon, F.M. and McLaughlin, F.A. (2007) Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophysical Research Letters, 34, L01603. https://doi.org/10.1029/2006GL027977
  41. Plumley, W.J. (1980) Abnormally high fluid pressure: Survey of some basic principles. Bulletin of American Association of Petroleum, 64, 414-422.
  42. Rachold, V., Eicken, H., Gordeev, V.V., Grigoriev, M.N., Hubberten, H.W., Lisitzin, A.P., Shevchenko, V.P., and Schirmeister, L. (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein, R. and Macdonald, R.W. (eds.), The Organic Carbon Ccycle in the Arctic Ocean. Springer, Berlin, Heidelberg, 33-56pp.
  43. Royer, T.C. and Emery, W.J. (1987) Circulation in the Gulf of Alaska, 1981. Deep Sea Research Part A. Oceanographic Research Papers, 34, 1361-1377. https://doi.org/10.1016/0198-0149(87)90132-4
  44. Ruppel C.D. (2011) Methane Hydrates and Contemporary Climate Change. Nature Education Knowledge, 3, 29p.
  45. Ruppel, C.D. and Kessler, J.D. (2017) The interaction of climate change and methane hydrates. Reviews of Geophysics, 55, 126-168. https://doi.org/10.1002/2016RG000534
  46. Soloviev, V.A. and Mazurenko, L.L. (2000) Sea floor venting and gas hydrate accumulation In: Max, M. (ed.), Natural Gas Hydrate. Coastal Systems and Continental Margins, Vol 5. Springer, Dordrecht, 371-378pp.
  47. Spilhagen, R., Baumann, K., Erlenkeuser, H., Nowaczyk, N., Norgaard-Pedersen, N., Vogt, C., and Weiel, D. (2004) Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23, 1455-1483. https://doi.org/10.1016/j.quascirev.2003.12.015
  48. Stabeno, P.J., Reed, R.K., and Schumacher, J.D. (1995) The Alaska coastal current: Continuity of transport and forcing. Journal of Geophysical Research, 100(C2), 2477-2485. https://doi.org/10.1029/94JC02842
  49. Vogt, P.R., Cherkashev, G., Ginsburg, G., Ivanov, G., Milkov, A., Crane, K., Lein, A., Sundvor, E., Pimenov, N., and Egorov, A. (1997) Haakon Mosby Mud Volcano provides unusual example of venting. Eos, Transactions American Geophysical Union, 78, 549-557.
  50. Yassir, N.A. (1989) Mud volcanoes and the behaviour of overpressured clays and silts. Doctoral Thesis, University of London, 249p.
  51. Zoporowski, A. and Miller, S.A. (2009) Modelling eruption cycles and decay of mud volcanoes. Marine and Petroleum Geology, 26, 1879-1887. https://doi.org/10.1016/j.marpetgeo.2009.03.003