DOI QR코드

DOI QR Code

Shear lag effect in steel-concrete composite beam in hogging moment

  • Luo, Da (College of Civil Engineering and Architecture, Guangxi University) ;
  • Zhang, Zhongwen (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University) ;
  • Li, Bing (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2018.12.21
  • Accepted : 2019.03.17
  • Published : 2019.04.10

Abstract

Shear lag effect can be an important phenomenon to consider in design of the steel-concrete composite beams. Researchers have found that the effect can be strongly related with the moment distribution, the stiffness and the ductility of the composite beams. For continuous composite beams expected to sustain hogging moment, the shear lag effect can be more distinct as cracking of the concrete slab reduces its shear stiffness. Despite its influences on behaviour of the steel-concrete composite beams, a method for calculating the shear lag effect in steel-concrete composite beams sustaining hogging moment is still not available. Shear lag effect in steel-concrete composite beams sustaining hogging moment is investigated in this paper. A method was proposed specifically for predicting the effect in the cracked part of the steel-concrete composite beam. The method is validated against available experimental data. At last, FE studies are conducted for steel-concrete composite beams with different design parameters, loading conditions and boundary conditions to further investigate the shear lag effect and compare with the proposed method.

Keywords

References

  1. Amadio, C., Fedrigo, C., Fragiacomo, M. and Macorini, L. (2004), "Experimental evaluation of effective width in steel-concrete composite beams", J. Constr. Steel Res., 60(2), 199-220. https://doi.org/10.1016/j.jcsr.2003.08.007
  2. Aref, A.J., Chiewanichakorn, M., Chen, S.S. and Ahn, I.S. (2007), "Effective slab width definition for negative moment regions of composite bridges", J. Bridge Eng., 12(3), 339-349. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(339)
  3. Beyer, K., Dazio, A. and Priestley, N. (2011), "Shear deformations of slender reinforced concrete walls under seismic loading", ACI Struct. J., 108(EPFL-ARTICLE-162084), 167-177.
  4. Bezerra, L.M., Bonilla Rocha, J.D., Mirambell Arrizabalaga, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., Int. J., 27(3), 355-370.
  5. Boules, P.F., Mehanny, S.S. and Bakhoum, M.M. (2018), "Shear lag effects on wide U-section pre-stressed concrete light rail bridges", Struct. Eng. Mech., Int. J., 68(1), 67-80.
  6. Carpenter, J.A., Chen, S.S., Aref, A.J., Chiewanichakorn, M., Ahn, I-S., Nottis, A. and Kalpakidis, I. (2005), "Effective slab width for composite steel bridge members", Report No. 543; Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, NY, USA.
  7. Castro, J.M., Elghazouli, A.Y. and Izzuddin, B.A. (2007), "Assessment of effective slab widths in composite beams", J. Constr. Steel Res., 63(10), 1317-1327. https://doi.org/10.1016/j.jcsr.2006.11.018
  8. Chen, S.S., Aref, A.J., Chiewanichakorn, M. and Ahn, I.S. (2007), "Proposed effective width criteria for composite bridge girders", J. Bridge Eng., 12(3), 325-338. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(325)
  9. Chiewanichakorn, M., Aref, A.J., Chen, S.S. and Ahn, I.S. (2004), "Effective flange width definition for steel-concrete composite bridge girder", J. Struct. Eng., 130(12), 2016-2031. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2016)
  10. Chiorean, C.G. and Buru, S.M. (2017), "Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action", Eng. Struct., 134, 74-106. https://doi.org/10.1016/j.engstruct.2016.12.017
  11. Dezi, L., Gara, F. and Leoni, G. (2003), "Shear-lag effect in twingirder composite decks", Steel Compos. Struct., Int. J., 3(2), 111-122. https://doi.org/10.12989/scs.2003.3.2.111
  12. Ding, F.X., Liu, J., Liu, X.M., Guo, F.Q. and Jiang, L.Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., Int. J., 20(6), 1369-1389. https://doi.org/10.12989/scs.2016.20.6.1369
  13. El-Shihy, A.M., Fawzy, H.M., Mustafa, S.A. and El-Zohairy, A.A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., Int. J., 10(3), 439-453.
  14. ENV 1994-1-1 (1994), Eurocode 4, Design of composite steel and concrete structures, BSI; UK.
  15. Fang, G., Wang, J., Li, S. and Zhang S. (2016), "Dynamic characteristics analysis of partial-interaction composite continuous beams", Steel Compos. Struct., Int. J., 21(1), 195-216. https://doi.org/10.12989/scs.2016.21.1.195
  16. Gao, Y., Zhou, Z., Liu, D. and Wang, Y. (2016), "Cracking of a prefabricated steel truss-concrete composite beam with preembedded shear studs under hogging moment", Steel Compos. Struct., Int. J., 21(5), 981-997. https://doi.org/10.12989/scs.2016.21.5.981
  17. Gara, F., Carbonari, S., Leoni, G. and Dezi, L. (2014), "A higher order steel-concrete composite beam model", Eng. Struct., 80, 260-273. https://doi.org/10.1016/j.engstruct.2014.09.002
  18. Goncalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., Int. J., 10(3), 223-243. https://doi.org/10.12989/scs.2010.10.3.223
  19. Henriques, D., Goncalves, R. and Camotim, D. (2015), "A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects", Thin-Wall. Struct., 90, 202-215. https://doi.org/10.1016/j.tws.2015.01.010
  20. Hines, E.M. and Seible, F. (2004), "Web crushing capacity of hollow rectangular bridge piers", ACI Struct. J., 101(4), 569-579.
  21. Ju, H., Lee, D.H., Hwang, J.H., Kang, J.W., Kim, K.S. and Oh, Y.H. (2013), "Torsional behavior model of steel-fiber-reinforced concrete members modifying fixed-angle softened-truss model", Compos. Part B: Eng., 45(1), 215-231. https://doi.org/10.1016/j.compositesb.2012.09.021
  22. Kim, J.H. and Mander, J.B. (1999), "Truss modeling of reinforced concrete shear-flexure behavior", Technical Report No. Mceer-99-0005; Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY, USA.
  23. Kim, J.H. and Mander, J.B. (2007), "Influence of transverse reinforcement on elastic shear stiffness of cracked concrete elements", Eng. Struct., 29(8), 1798-1807. https://doi.org/10.1016/j.engstruct.2006.10.001
  24. Kulkarni, S.A. and Li, B. (2008) "Finite Element Analysis of Precast Hybrid-Steel Concrete Connections under Cyclic Loading", J. Constr. Steel Res., 64, 190-201. https://doi.org/10.1016/j.jcsr.2007.05.002
  25. Kwan, A.K.H. (1996), "Shear lag in shear/core walls", J. Struct. Eng., 122(9), 1097-1104. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:9(1097)
  26. Lasheen, M., Shaat, A. and Khalil, A. (2018), "Numerical evaluation for the effective slab width of steel-concrete composite beams", J. Constr. Steel Res., 148, 124-137. https://doi.org/10.1016/j.jcsr.2018.05.015
  27. Lee, C.K. and Chiew, S.P. (2013), "An efficient modified flanges only method for plate girder bending resistance calculation", J. Constr. Steel Res., 89, 98-106. https://doi.org/10.1016/j.jcsr.2013.06.012
  28. MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design (Vol. 3), Prentice Hall, Upper Saddle River, NJ, USA.
  29. Moffatt, K.R. and Dowling, P.J. (1978), "British shear lag rules for composite girders", J. Struct. Div.-ASCE, 104(7), 1123-1130. https://doi.org/10.1061/JSDEAG.0004954
  30. Moharrami, M., Koutromanos, I., Panagiotou, M. and Girgin, S. (2015), "Analysis of shear-dominated RC columns using the nonlinear truss analogy", Earthq. Eng. Struct. D., 44(5), 677-694. https://doi.org/10.1002/eqe.2480
  31. Nie, J.G., Cai, C.S., Zhou, T.R. and Li, Y. (2007), "Experimental and analytical study of prestressed steel-concrete composite beams considering slip effect", J. Struct. Eng., 133(4), 530-540. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:4(530)
  32. Nie, J.G., Tian, C.Y. and Cai, C.S. (2008), "Effective width of steel-concrete composite beam at ultimate strength state", Eng. Struct., 30(5), 1396-1407. https://doi.org/10.1016/j.engstruct.2007.07.027
  33. Pan, Z. and Li, B. (2013), "Truss-Arch Model for Shear Strength of Shear-Critical Reinforced Concrete Columns" ASCE J. Struct. Eng., 139(4): 548-560. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000677
  34. Pan, Z., Li, B. and Lu, Z. (2014), "Effective shear stiffness of diagonally cracked reinforced concrete beams", Eng. Struct., 59(2), 95-103. https://doi.org/10.1016/j.engstruct.2013.10.023
  35. Paulay, T. (1971), "Coupling beams of reinforced concrete shear walls", J. Struct Div.-ASCE, 97(3), 843-862. https://doi.org/10.1061/JSDEAG.0002848
  36. Pecce, M., Rossi, F., Bibbo, F.A. and Ceroni, F. (2012), "Experimental behaviour of composite beams subjected to a hogging moment", Steel Compos. Struct., Int. J., 12(5), 395-412. https://doi.org/10.12989/scs.2012.12.5.395
  37. Qi, J., Wang, J., Li, M. and Chen, L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., Int. J., 25(1), 79-92.
  38. Siekierski, W. (2015), "Equivalent moment of inertia of a truss bridge with steel-concrete composite deck", Struct. Eng. Mech., 55(4), 801-813. https://doi.org/10.12989/sem.2015.55.4.801
  39. Singh, Y. and Nagpal, A.K. (1994), "Negative shear lag in framedtube buildings", J. Struct. Eng., 120(11), 3105-3121. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3105)
  40. Sun, Q., Yang, Y., Fan, J., Zhang, Y. and Bai, Y. (2014), "Effect of longitudinal reinforcement and prestressing on stiffness of composite beams under hogging moments", J. Constr. Steel Res., 100, 1-11. https://doi.org/10.1016/j.jcsr.2014.04.017
  41. TNO Diana (2014), Finite Element Analysis User's Manual-Release 9.6 TNO DIANA, Delft, The Netherlands.
  42. Vecchio, F.J. (1983), The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses, University of Toronto, Ontario, Canada.
  43. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231.
  44. Xiang, Y. and He, X. (2017), "Short-and long-term analyses of shear lag in RC box girders considering axial equilibrium", Struct. Eng. Mech., Int. J., 62(6), 725-737.
  45. Yang, Y., Yu, Y., Zhou, X., Roeder, C.W. and Huo, X. (2016), "Study on mechanical performance of composite beam with innovative composite slabs", Steel Compos. Struct., Int. J., 21(3), 537-551. https://doi.org/10.12989/scs.2016.21.3.537
  46. Zhang, Z. and Li, B. (2017), "Shear lag effect in tension flange of RC walls with flanged sections", Eng. Struct., 143, 64-76. https://doi.org/10.1016/j.engstruct.2017.04.017
  47. Zhang, Z. and Li, B. (2018), "Effects of the shear lag on longitudinal strain and flexural stiffness of flanged RC structural walls", Eng. Struct., 156, 130-144. https://doi.org/10.1016/j.engstruct.2017.11.020
  48. Zhong, X., Zhang, T., Shu, X. and Xu, H. (2017), "Shear-lag behavior of prestressed concrete box-girder bridges during balanced cantilever construction", Adv. Concr. Constr., 5(5), 469-479. https://doi.org/10.12989/acc.2017.5.5.469

Cited by

  1. Optimization of steel-concrete composite beams considering cost and environmental impact vol.34, pp.3, 2019, https://doi.org/10.12989/scs.2020.34.3.409
  2. Effective width of steel-concrete composite beams under negative moments in service stages vol.38, pp.4, 2019, https://doi.org/10.12989/scs.2021.38.4.415
  3. Space grillage analysis model of steel-concrete composite beam vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.255