References
- Amadio, C., Fedrigo, C., Fragiacomo, M. and Macorini, L. (2004), "Experimental evaluation of effective width in steel-concrete composite beams", J. Constr. Steel Res., 60(2), 199-220. https://doi.org/10.1016/j.jcsr.2003.08.007
- Aref, A.J., Chiewanichakorn, M., Chen, S.S. and Ahn, I.S. (2007), "Effective slab width definition for negative moment regions of composite bridges", J. Bridge Eng., 12(3), 339-349. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(339)
- Beyer, K., Dazio, A. and Priestley, N. (2011), "Shear deformations of slender reinforced concrete walls under seismic loading", ACI Struct. J., 108(EPFL-ARTICLE-162084), 167-177.
- Bezerra, L.M., Bonilla Rocha, J.D., Mirambell Arrizabalaga, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., Int. J., 27(3), 355-370.
- Boules, P.F., Mehanny, S.S. and Bakhoum, M.M. (2018), "Shear lag effects on wide U-section pre-stressed concrete light rail bridges", Struct. Eng. Mech., Int. J., 68(1), 67-80.
- Carpenter, J.A., Chen, S.S., Aref, A.J., Chiewanichakorn, M., Ahn, I-S., Nottis, A. and Kalpakidis, I. (2005), "Effective slab width for composite steel bridge members", Report No. 543; Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, NY, USA.
- Castro, J.M., Elghazouli, A.Y. and Izzuddin, B.A. (2007), "Assessment of effective slab widths in composite beams", J. Constr. Steel Res., 63(10), 1317-1327. https://doi.org/10.1016/j.jcsr.2006.11.018
- Chen, S.S., Aref, A.J., Chiewanichakorn, M. and Ahn, I.S. (2007), "Proposed effective width criteria for composite bridge girders", J. Bridge Eng., 12(3), 325-338. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(325)
- Chiewanichakorn, M., Aref, A.J., Chen, S.S. and Ahn, I.S. (2004), "Effective flange width definition for steel-concrete composite bridge girder", J. Struct. Eng., 130(12), 2016-2031. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2016)
- Chiorean, C.G. and Buru, S.M. (2017), "Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action", Eng. Struct., 134, 74-106. https://doi.org/10.1016/j.engstruct.2016.12.017
- Dezi, L., Gara, F. and Leoni, G. (2003), "Shear-lag effect in twingirder composite decks", Steel Compos. Struct., Int. J., 3(2), 111-122. https://doi.org/10.12989/scs.2003.3.2.111
- Ding, F.X., Liu, J., Liu, X.M., Guo, F.Q. and Jiang, L.Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., Int. J., 20(6), 1369-1389. https://doi.org/10.12989/scs.2016.20.6.1369
- El-Shihy, A.M., Fawzy, H.M., Mustafa, S.A. and El-Zohairy, A.A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., Int. J., 10(3), 439-453.
- ENV 1994-1-1 (1994), Eurocode 4, Design of composite steel and concrete structures, BSI; UK.
- Fang, G., Wang, J., Li, S. and Zhang S. (2016), "Dynamic characteristics analysis of partial-interaction composite continuous beams", Steel Compos. Struct., Int. J., 21(1), 195-216. https://doi.org/10.12989/scs.2016.21.1.195
- Gao, Y., Zhou, Z., Liu, D. and Wang, Y. (2016), "Cracking of a prefabricated steel truss-concrete composite beam with preembedded shear studs under hogging moment", Steel Compos. Struct., Int. J., 21(5), 981-997. https://doi.org/10.12989/scs.2016.21.5.981
- Gara, F., Carbonari, S., Leoni, G. and Dezi, L. (2014), "A higher order steel-concrete composite beam model", Eng. Struct., 80, 260-273. https://doi.org/10.1016/j.engstruct.2014.09.002
- Goncalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., Int. J., 10(3), 223-243. https://doi.org/10.12989/scs.2010.10.3.223
- Henriques, D., Goncalves, R. and Camotim, D. (2015), "A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects", Thin-Wall. Struct., 90, 202-215. https://doi.org/10.1016/j.tws.2015.01.010
- Hines, E.M. and Seible, F. (2004), "Web crushing capacity of hollow rectangular bridge piers", ACI Struct. J., 101(4), 569-579.
- Ju, H., Lee, D.H., Hwang, J.H., Kang, J.W., Kim, K.S. and Oh, Y.H. (2013), "Torsional behavior model of steel-fiber-reinforced concrete members modifying fixed-angle softened-truss model", Compos. Part B: Eng., 45(1), 215-231. https://doi.org/10.1016/j.compositesb.2012.09.021
- Kim, J.H. and Mander, J.B. (1999), "Truss modeling of reinforced concrete shear-flexure behavior", Technical Report No. Mceer-99-0005; Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY, USA.
- Kim, J.H. and Mander, J.B. (2007), "Influence of transverse reinforcement on elastic shear stiffness of cracked concrete elements", Eng. Struct., 29(8), 1798-1807. https://doi.org/10.1016/j.engstruct.2006.10.001
- Kulkarni, S.A. and Li, B. (2008) "Finite Element Analysis of Precast Hybrid-Steel Concrete Connections under Cyclic Loading", J. Constr. Steel Res., 64, 190-201. https://doi.org/10.1016/j.jcsr.2007.05.002
- Kwan, A.K.H. (1996), "Shear lag in shear/core walls", J. Struct. Eng., 122(9), 1097-1104. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:9(1097)
- Lasheen, M., Shaat, A. and Khalil, A. (2018), "Numerical evaluation for the effective slab width of steel-concrete composite beams", J. Constr. Steel Res., 148, 124-137. https://doi.org/10.1016/j.jcsr.2018.05.015
- Lee, C.K. and Chiew, S.P. (2013), "An efficient modified flanges only method for plate girder bending resistance calculation", J. Constr. Steel Res., 89, 98-106. https://doi.org/10.1016/j.jcsr.2013.06.012
- MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design (Vol. 3), Prentice Hall, Upper Saddle River, NJ, USA.
- Moffatt, K.R. and Dowling, P.J. (1978), "British shear lag rules for composite girders", J. Struct. Div.-ASCE, 104(7), 1123-1130. https://doi.org/10.1061/JSDEAG.0004954
- Moharrami, M., Koutromanos, I., Panagiotou, M. and Girgin, S. (2015), "Analysis of shear-dominated RC columns using the nonlinear truss analogy", Earthq. Eng. Struct. D., 44(5), 677-694. https://doi.org/10.1002/eqe.2480
- Nie, J.G., Cai, C.S., Zhou, T.R. and Li, Y. (2007), "Experimental and analytical study of prestressed steel-concrete composite beams considering slip effect", J. Struct. Eng., 133(4), 530-540. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:4(530)
- Nie, J.G., Tian, C.Y. and Cai, C.S. (2008), "Effective width of steel-concrete composite beam at ultimate strength state", Eng. Struct., 30(5), 1396-1407. https://doi.org/10.1016/j.engstruct.2007.07.027
- Pan, Z. and Li, B. (2013), "Truss-Arch Model for Shear Strength of Shear-Critical Reinforced Concrete Columns" ASCE J. Struct. Eng., 139(4): 548-560. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000677
- Pan, Z., Li, B. and Lu, Z. (2014), "Effective shear stiffness of diagonally cracked reinforced concrete beams", Eng. Struct., 59(2), 95-103. https://doi.org/10.1016/j.engstruct.2013.10.023
- Paulay, T. (1971), "Coupling beams of reinforced concrete shear walls", J. Struct Div.-ASCE, 97(3), 843-862. https://doi.org/10.1061/JSDEAG.0002848
- Pecce, M., Rossi, F., Bibbo, F.A. and Ceroni, F. (2012), "Experimental behaviour of composite beams subjected to a hogging moment", Steel Compos. Struct., Int. J., 12(5), 395-412. https://doi.org/10.12989/scs.2012.12.5.395
- Qi, J., Wang, J., Li, M. and Chen, L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., Int. J., 25(1), 79-92.
- Siekierski, W. (2015), "Equivalent moment of inertia of a truss bridge with steel-concrete composite deck", Struct. Eng. Mech., 55(4), 801-813. https://doi.org/10.12989/sem.2015.55.4.801
- Singh, Y. and Nagpal, A.K. (1994), "Negative shear lag in framedtube buildings", J. Struct. Eng., 120(11), 3105-3121. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3105)
- Sun, Q., Yang, Y., Fan, J., Zhang, Y. and Bai, Y. (2014), "Effect of longitudinal reinforcement and prestressing on stiffness of composite beams under hogging moments", J. Constr. Steel Res., 100, 1-11. https://doi.org/10.1016/j.jcsr.2014.04.017
- TNO Diana (2014), Finite Element Analysis User's Manual-Release 9.6 TNO DIANA, Delft, The Netherlands.
- Vecchio, F.J. (1983), The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses, University of Toronto, Ontario, Canada.
- Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231.
- Xiang, Y. and He, X. (2017), "Short-and long-term analyses of shear lag in RC box girders considering axial equilibrium", Struct. Eng. Mech., Int. J., 62(6), 725-737.
- Yang, Y., Yu, Y., Zhou, X., Roeder, C.W. and Huo, X. (2016), "Study on mechanical performance of composite beam with innovative composite slabs", Steel Compos. Struct., Int. J., 21(3), 537-551. https://doi.org/10.12989/scs.2016.21.3.537
- Zhang, Z. and Li, B. (2017), "Shear lag effect in tension flange of RC walls with flanged sections", Eng. Struct., 143, 64-76. https://doi.org/10.1016/j.engstruct.2017.04.017
- Zhang, Z. and Li, B. (2018), "Effects of the shear lag on longitudinal strain and flexural stiffness of flanged RC structural walls", Eng. Struct., 156, 130-144. https://doi.org/10.1016/j.engstruct.2017.11.020
- Zhong, X., Zhang, T., Shu, X. and Xu, H. (2017), "Shear-lag behavior of prestressed concrete box-girder bridges during balanced cantilever construction", Adv. Concr. Constr., 5(5), 469-479. https://doi.org/10.12989/acc.2017.5.5.469
Cited by
- Optimization of steel-concrete composite beams considering cost and environmental impact vol.34, pp.3, 2019, https://doi.org/10.12989/scs.2020.34.3.409
- Effective width of steel-concrete composite beams under negative moments in service stages vol.38, pp.4, 2019, https://doi.org/10.12989/scs.2021.38.4.415
- Space grillage analysis model of steel-concrete composite beam vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.255