Figure 1. Swellability and dynamics of equilibration of a polymer exposed to CO2 with time during pressurization and depressurization7).
Figure 2. Supercritical methanol trans esterification system.
Figure 3. Relationship between reaction temperature and pressure inside a bath type reaction vessel. The shadowed zone is in supercritical state of methanol32).
Figure 4. Schematic diagram illustration of the processes of supercritical pretreatment(impregnation and thermal treatment), decompression, and electroless deposition of copper on the KevlarⓇ fiber by magnet stirring or ultrasonic irradiation.
Figure 5. Qualitative representation of the solubility behavior of disperses dyes in SC-CO281).
Figure 6. Difference in water dyeing by temperature (0.3% o.w.f.).
Figure 7. Structure of C.I. Disperse Red 60 85).
Figure 8. Solubility of C. I. Disperse Red 60, y, in SCCO2 as a function of pressure42).
Table 1. Critical points of each solvent12)
Table 2. Effect of the SC-CO2 pretreatment upon lignin removal of ramie fibers66)
Table 3. Advantages and disadvantages of high pressure phase equilibrium methods1)
Table 4. Relation of solubility, y, to the dye uptake of C. I. Disperse Red 60 in SC-CO2 at different pressures, P74)
References
- T. Kim, G. Park, W. Kong, and Y. Lee, Supercritical Dyeing Technology, Clean Technology, 24(1), 1(2018). https://doi.org/10.7464/KSCT.2018.24.1.001
- J. Lee, Review : Present Status of Green Chemistry, J. of the KIMST, 14(2), 246(2011).
-
H. Zheng, J. Zhang, J. Yan, and L. Zheng, An Industrial Scale Multiple Supercritical Carbon Dioxide Apparatus and its Eco-friendly Dyeing Production,
$CO_2$ Utilizaton, 6(3), 272(2016). - Y. Lee, Supercritical Fluid Dyeing Technology, Clean Technology, 55(7), 1(2015).
- M. Liu,J. Hong, Z. Hao, J. Wu, X. Xiong, and L. Zheng, Eco-friendly Curcumin-based Dyes for Supercritical Carbon Dioxide Natural Fabric Dyeing, Cleaner Production, 187(1), 1262(2018).
- C. Koo, S. Yu, B. Baek, H. Cho, Y. Lee, and S. Hong, Recycling Technology of Crosslinked-Polymers Using Supercritical Fluid, Elastomers and Composites, 47(2), 111(2012). https://doi.org/10.7473/EC.2012.47.2.111
- J. K. Bal, T. Beuvier, M. S. Chebil, G. Vignaud, Y. Grohens, M. K. Sanyal, and M. K. Gibaud, Relaxation of Ultrathin Polystyrene Films Hyperswollen in Supercritical Carbon Dioxide, Macromolecules, 47(24), 8738 (2014). https://doi.org/10.1021/ma501281t
-
C. Choi and J. Song, Swelling and Mechanical Properties of Shale and Sandstone after Reacted with Supercritical
$CO_2$ , Proceedings of the ISRM Regional Symposium, Seoul, Vol.22(4), pp.266-275, 2012. - G. Kim, Supercritical Fluid Extraction Technology for Food Industry, Technology for Food Industry, Food Industry and Nutrition, 17(1), 17(2012).
- E. Lee, K. Chang, Y. Kwon, and E. Lee, Optimization of the Alliins Extraction in the Garlic by Supercritical Carbon Dioxide, Food Engineering Progress, 1, 149 (1997).
-
G. Musgrove, A. M. Rimpel, and J. C. Wilkes, Fundamentals of Supercritical
$CO_2$ , ASME Turbo Expo, Copenhagen, GT2012, p.70181, 2012. - Y. Cho, H. Kim, J. Kim, S. Lee, W. Kim, J. Ryu, and G. Lim, Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide, KSBB, 19(6), 427(2004).
- Y. Ju, M. Lee, M. Woo, and S. Byun, The Current Status of Supercritical Fluid Extraction Technology and Industrial Applications, Korean J. Biotechnol. Bioeng., 20(5), 329(2005).
-
H. Lim, B. Choi, M. Park, S. Hwang, J. Park, J. Seo, J. Bang, E. Yoon, B. Kim, and D. Lee, Development of Power Turbine for Supercritical
$CO_2$ Power System, Proceeding of Korea Supercritical Tech., Korea, pp.177-178, 2017. -
G. Genov, Physical Processes of the
$CO_2$ Hydrate Formation and Decomposition at Conditions Relevant to Mars, Ph.D. Thesis, Georg August University, 2005. - S. Yoon and H. Byun, Application of Separation Technology and Supercritical Fluids Process, Clean Technology, 18(2), 123(2012). https://doi.org/10.7464/ksct.2012.18.2.123
- S. Kim, M. Lee, S. Back, and B. Chun, Extraction and Identification of Volatile Isothiocyanates from Wasabi using Supercritical Carbon Dioxide, Korean Society for Biotechnology and Bioengineering, 22(3), 174(2007).
- U. Min, M. Ark, J. Jeon, B. Choi, and H. Bae, Dye Uptake of Polyester Fiber in Supercritical Fluids, Korean Chemical Engineering Research, 42(2), 213(2004).
-
J. Choi, H. Lim, K. Han, H. Kang, and D. Choi, Characterization of Degradation Features and Degradative Products of Poplar Wood(Populus alba
${\times}$ glandulosa) by Flow Type-Supercritical Water Treatment, J. Kor. For. En., 24(1), 39(2015). -
J. Walther, Mineral Solubilitiesin Supercritical
$H_2O$ Solutions, Pure and Applied Chemistry, Pure and Appl. Chem, 58(12), 1585(1986). https://doi.org/10.1351/pac198658121585 - M. Fr and H. Ma, Biodiesel Production: A Review, Bioresour Technology, 70, 1(1999). https://doi.org/10.1016/S0960-8524(99)00025-5
- M. Garcia, A. Gonzalo, S. Luis, J. Arauzo, and C. Simoes, Methanolysis and Ethanolysis of Animal Fats: a Comparative Study of the Influence of Alcohols, Chemical Industry, 17(1), 91(2011).
- K. Harvind, R. M. Tapaswy, P. D. Patil, S. Ponnusamy, C. Peter, T. Schaub, and D. Shuguang, Direct Conversion of Wet Algae to Fatty Acid Ethyl Esters under Supercritical Ethanol Conditions, J. Fuel, 115, 720(2014). https://doi.org/10.1016/j.fuel.2013.07.090
- D. Prafulla, P. V. Gude, M. Aravind, D. Shuguang, P. Cooke, M. Stuart, I. Rhodes, P. Lammers, and N. Nagamany, Optimization of Direct Conversion of Wet Algae to Biodiesel under Supercritical Methanol Conditions, Bioresource Technology, 102(1), 118(2011). https://doi.org/10.1016/j.biortech.2010.06.031
- A. Demirbas, Biodiesel from Vegetable Oils via Transesterification in Supercritical Methanol, Energy Conversion and Management, 43(17), 2349(2002). https://doi.org/10.1016/S0196-8904(01)00170-4
- M. N. Varma and G. Madras, Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids, Industrial and Engineering Chemistry Research, 46(1), 1(2007). https://doi.org/10.1021/ie0607043
- S. Saka and D. Kusdiana, Biodiesel Fuelfrom Rapeseed Oil as Prepared in Supercritical Methanol, J. Fuel, 80(2), 225(2001). https://doi.org/10.1016/S0016-2361(00)00083-1
- N. Martini and S. Schell, Plant Oils as Fuels: "Present State of Science and Future Developments", Springer Verlag, Potsdam, pp.16-18, 2012.
- C. Xu and T. Etcheverry, Hydro-liquefaction of Woody Biomass in Sub- and Supercritical Ethanol with Iron-based Catalysts, Fuel, 87(3), 335(2008). https://doi.org/10.1016/j.fuel.2007.05.013
- G. Knothe, Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters, Fuel Process Technology, 86(10), 1059(2005). https://doi.org/10.1016/j.fuproc.2004.11.002
- H. Joshi, B. Moser, J. Toler, and T. Walker, Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters, Biomass Bioenergy, 34(1), 14(2010). https://doi.org/10.1016/j.biombioe.2009.09.006
- D. Kusdiana and S. Saka, Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methano, Fuel, 81(5), 693(2001). https://doi.org/10.1016/S0016-2361(00)00140-X
- G. An, W. Ma, Z. Sun, Z. Liu, B. Han, and S. Miao, Preparation of Titania/carbon Nanotube Composites using Supercritical Ethanol and their Photocatalytic Activity for Phenol Degradation under Visible Light Irradiation, Carbon, 45(9), 1795(2007). https://doi.org/10.1016/j.carbon.2007.04.034
- E. Bach, E. Cleve, and E. Schollmeyer, Past, Present and Future of Supercritical Fluid Dyeing Technology-an Overview, Rev. Prog. Color, 32(1), 88(2002). https://doi.org/10.1111/j.1478-4408.2002.tb00253.x
- K. Poulakis, M. Spee, G. Schneider, D. Knittel, H. Buschmann, and E. Schollmeyer, Dyeing of Polyester Fibers in Supercritical Carbon Dioxide, Chemiefasern Textilind, 41, 534(1991).
- D. Knittel, W. Saus, and E. Schollmeyer, Dyeing of Textiles in Supercritical Carbon Dioxide, Textile Research J., 63(3), 135(1993). https://doi.org/10.1177/004051759306300302
- W. Saus, D. Knittel, and E. Schollmeer, Application of Supercritical Carbon Dioxide in Finishing Processes, Textile Praxis Int., 84(4), 534(1993).
- C. Tsai, H. Lin, and M. Lee, Fluid Phase Equilibria, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2007). https://doi.org/10.1016/j.fluid.2007.07.070
-
J. Schnitzler, R. Eggers, and J. Mass, Transfer in Polymersin a Supercritical
$CO_2$ -Atmosphere, Supercrit, Fluids, 16(1), 81(1999). - D. Bartle, A. Clifford, A. Jafar, and F. Shilstone, Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide, J. of Physical and Chemical Reference Data, 20(4), 713(1996). https://doi.org/10.1063/1.555893
- C. Kirby and M. McHugh, Phase Behavior of Polymers in Supercritical Fluid Solvents, Chem. Rev., 99(2), 565 (1999). https://doi.org/10.1021/cr970046j
-
B. Ping and J. Dai, Relationships between the Solubility of C. I. Disperse Red 60 and Uptake on PET in Supercritical
$CO_2$ , J. Chem. Eng. Data, 50(3), 838(2005). https://doi.org/10.1021/je0496847 -
N. Brantley, S. Kazarian, and C. Eckert, In situ Spectroscopy of Polymers Subjected to Supercritical
$CO_2$ : Plasticization and Dye Impregnation, J. Appl. Polym. Sci., 51(4), 491(2000). - H. Lin, C. Ho, M. Lee, and J. Supercrit, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2004). https://doi.org/10.1016/j.fluid.2007.07.070
- S. Park, D. I. Tuma, S. Kim, Y. Lee, and J. Shim, Sorption of C. I. Disperse Red 60 in Polystyrene and PMMA Films and Polyester and Nylon 6 Textilesin the Presence of Supercritical Carbon Dioxide, Korean J.Chem. Eng., 27(1), 299(2010). https://doi.org/10.1007/s11814-010-0098-6
- E. Bach, E. Cleve, E. Schollmeyer, M. Bork, and P. Korner, The Dyeing of Natural Gibres with Reactive Disperse Dyes in Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003). https://doi.org/10.1016/S0143-7208(02)00108-0
-
A. Ferri, M. Banchero, L. Manna, and S. Sicardi, Impregnation of PVP Microparticles with Ketoprofen in the Presence of Supercritical
$CO_2$ , J. Supercrit. Fluids, 42(3), 378(2006). https://doi.org/10.1016/j.supflu.2006.12.002 - M. Banchero, Supercritical Fluid Dyeing of Synthetic and Natural Textiles - A Review, Color. Technol., 129(1), 2(2013). https://doi.org/10.1111/cote.12005
- S. Liao, Dyeing Nylon-6,6 with Some Hydrophobic Reactive Dyes by Supercritical Processing, J. Polym. Res., 11(4), 285(2005). https://doi.org/10.1007/s10965-005-4046-9
- M. Kraan, M. Fernandez, G. Woerlee, W. T. Veugelers, and G. Witkamp, Dyeing of Natural and Synthetic Textiles in Supercritical Carbon Dioxide with Disperse Reactive Dyes, J. Supercrit. Fluids, 40(3), 470(2007). https://doi.org/10.1016/j.supflu.2006.07.019
- J. Long, Y. Ma, and J. Zhao, Investigations on the Level Dyeing of Fabrics in Supercritical Carbon Dioxide, J. Supercritical Fluids, 57(1), 80(2011). https://doi.org/10.1016/j.supflu.2011.02.007
- M. Kraan, Process and Equipment Development for Textile Dyeing in Supercritical Carbon Dioxide, Ph.D. Thesis, Delft University of Technology, 2005.
- A. Hou, B. Chen, J. Dai, and K. Zhang, Using Supercritical Carbon Dioxide as Solvent to Replace Water in Polyethylene Terephthalate(PET) Fabric Dyeing Procedures, J. Clean. Prod., 18(10-11), 1009(2010). https://doi.org/10.1016/j.jclepro.2010.03.001
- C. Tsai, H. Lin, and M. Lee, Solubility of C. I. Disperse Violet 1 in Supercritical Carbon Dioxide with or without Cosolvent, J. of Chemical and Engineering Data, 53(9), 2163(2008). https://doi.org/10.1021/je8003673
- G. Woerlee, Dry-cleaning with High-pressure Carbon Dioxide-the Influence of Mechanical Action on Washing-results, J. of Supercritical Fluids, 27(1), 97(2003). https://doi.org/10.1016/S0896-8446(02)00212-7
- G. Huang, Y. Xing, and J. Dai, Proceeding International Conference Computer Distributed Control and Intelligent Environmental Monitoring, Changsa, pp.48-51, 2011.
- P. Michel, Supercritical Fluid Applications: Industrial Developments and Economic Issues, Ind. Eng. Chem. Res., 39(12), 4531(2000). https://doi.org/10.1021/ie000211c
- G. Montero, D. Hinks, and J. Hooker, Reducing Problems of Cyclic Trimer Deposits in Supercritical Carbon Dioxide Polyester Dyeing Machinery, J. Supercrit. Fluids, 26(1), 47(2003). https://doi.org/10.1016/S0896-8446(02)00187-0
-
E. Bach, E. Cleve, E. Schollmeyer, P. Nunnerich, and H. Dierkes, Experience with the Uhde
$CO_2$ -Dyeing Plant on a Technical Scale Part 3: Quality of Polyester Dyed in Supercritical Carbon Dioxide, Melliand International, 10(1), 66(2004). - A. Schmidt, E. Bach, and E. Schollmeyer, The Dyeing of Natural Fibres with Reactive Disperse Dyesin Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003). https://doi.org/10.1016/S0143-7208(02)00108-0
- F. Bruhlmann, M. Leupin, K. Erismann, A. Fiechter, and J. Biotechnol, Enzymatic Degumming of Ramie Bast Fibers, J. Biotechnology, 76(1), 43(2000). https://doi.org/10.1016/S0168-1656(99)00175-3
- L. Zhou, Y. K. W.C. Yuen, and X. Zhou, Effect of Mercerisation and Crosslinking on the Dyeing Properties of Ramie Fabric, Coloration Technology, 119(3), 170 (2003). https://doi.org/10.1111/j.1478-4408.2003.tb00168.x
- K. Hirogaki, I. Tabata, K. Hisada, and T. Hori, An Investigation of the Morphological Changes in Poly(ethylene terephthalate) Fiber Treated with Supercritical Carbon Dioxide under Various Conditions, J. of Supercritical Fluids, 38(3), 399(2006). https://doi.org/10.1016/j.supflu.2005.12.006
-
E. Kim and E. Csiszaar, The Pretreatment of Ramie Fiber Material with Supercritical
$CO_2$ Fluid, J. of Natural Fibers, 2(2005), 39(2012). - L. Zhou, K. Yeung, and W. Yuen, Effect of NaOH Mercerization on the Crosslinking of Ramie Yarn Using 1,2,3,4-Butanetetracarboxylic Acid, Textile Research J., 72(6), 531(2002). https://doi.org/10.1177/004051750207200612
-
H. Zheng,R. Zhang, X. Zhao, and T. Hori, The Pretreatment of Ramie Fiber Material with Supercritical
$CO_2$ , Applied Mechanics and Materials, 236-237, 139(2012). https://doi.org/10.4028/www.scientific.net/AMM.236-237.139 - H. Adachi, K. Taki, S. Nagamine, A. Yusa, and M. Ohshima, Supercritical Carbon Dioxide Assisted Ectroless Plating on Thermoplastic Polymers, J. of Supercritical Fluids, 49(2), 265(2009). https://doi.org/10.1016/j.supflu.2008.12.010
- W. Oh, J. Kim, and H. Kim, Improved Adhesion Property and Electromagnetic Interference Shielding Effectiveness of Electroless Cu-plated Layer on Poly(ethylene terephthalate) by Plasma Treatment, J. of Applied Polymer Science, 84(7), 1369(2002). https://doi.org/10.1002/app.10272
- T. Siwach and O. Masahiro, Supercritical Carbon Dioxide-assisted Electroless Nickel Plating on Polypropylene-The Effect of Copolymer Blend Morphology on metal-Polymer Adhesion, J. of Supercritical Fluids, 85, 123 (2014). https://doi.org/10.1016/j.supflu.2013.11.012
- X. Zhao, H. Kazumasa, T. Isao, S. Okubayashi, and T. Hori, A New Method of Producing Conductive Aramid Fibers using Supercritical Carbon Dioxide, Surface and Coatings Technology, 201(3-4), 628(2005). https://doi.org/10.1016/j.surfcoat.2005.12.021
- I. Andrew, Cooper, Polymer Synthesis and Processing using Supercritical Carbon Dioxide, J. of Materials Chemistry, 10(2), 207(2000). https://doi.org/10.1039/a906486i
- M. Valcarcel, M. Lopez, L. Arce,J. Garrido, and A. Talanta, Selective Extraction of Astaxanthin from Crustaceans by Use of Supercritical Carbon Dioxide, Talanta, 64(3), 726(2004). https://doi.org/10.1016/j.talanta.2004.03.048
- D. Yu, S. Mu, L. Liu, and W. Wang, Preparation of Electroless Silver Plating on Aramid Fiber with Good Conductivity and Adhesion Strength, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 53(2015). https://doi.org/10.1016/j.colsurfa.2015.07.021
- G. Montero, C. Smith, W. Hendrix, and D. Butcher, Supercritical Fluid Technology in Textile Processing: An Overview, Ind. Eng. Chem. Res., 39(12), 4806(2000). https://doi.org/10.1021/ie0002475
- A. Ferri, M. Banchero, L. Manna, and S. Sicardi, An Experimental Technique for Measuring High Solubilities of Dyesin SupercriticalCarbon Dioxide, J. of Supercritical Fluids, 30(1), 41(2004). https://doi.org/10.1016/S0896-8446(03)00114-1
- T. Dirk, M. Gerhard, and M. Schneider, High-pressure Solubility of Disperse Dyes in Near- and Supercritical Fluids: Measurements up to 100 MPa by a Static Method, J. of Supercritical Fluids, 13(1-3), 37(1998). https://doi.org/10.1016/S0896-8446(98)00032-1
- B. Cornelia, B. Wagner, and M. Schneider, High-pressure Solubility of 1,4-bis-(n-alkylamino)-9,10-anthraquinones in Near- and Supercritical Carbon Dioxide, J. of Supercritical Fluids, 13(1-3), 43(1998). https://doi.org/10.1016/S0896-8446(98)00033-3
-
J. Beckman, Supercritical and Near-critical
$CO_2$ in Green Chemical Synthesis and Processing, J. of Supercritical Fluids, 28(2-3), 121(2004). https://doi.org/10.1016/S0896-8446(03)00029-9 - E. Bacha, E. Cleve, J. Schuttken, E. Schollmeyer, and W. Rucker, Correlation of Solubility Data of Azo Disperse Dyes with the Dye Uptake of Poly(ethyleneterephthalate) Fibresin Supercritical Carbon Dioxide, Coloration Technology, 117(1), 13(2006). https://doi.org/10.1111/j.1478-4408.2001.tb00329.x
- Y. Iwai, M. Uno, H. Nagano, and Y. Arai, Measurement of Solubilities of Palmitic Acid in Supercritical Carbon Dioxide and Entrainer Effect of Water by FT-IR Spectroscopy, Coloration Technology, 28(2-3), 13(2004).
- R. Tabaraki, T. Khayamian, and A. A. Ensafi, Wavelet Neural Network Modeling in QSPR for Prediction of Solubility of 25 Anthraquinone Dyes at Different Temperatures and Pressuresin Supercritical Carbon Dioxide, J. Mol. Graph. Model., 25(1), 46(2006). https://doi.org/10.1016/j.jmgm.2005.10.012
- R. Tabaraki, T. Khayamian, and A. A. Ensafi, Solubility Prediction of 21 Azo Dyesin Supercritical Carbon Dioxide Using Wavelet Neural Network, Dye. Pigment., 73(2), 230(2007). https://doi.org/10.1016/j.dyepig.2005.12.003
- A. Tarasova, F. Burden, J. Gasteiger, and A. D. Winkler, Robust Modelling of Solubility in Supercritical Carbon Dioxide Using Bayesian Methods, J. Mol. Graph. Model., 28(7), 593(2010). https://doi.org/10.1016/j.jmgm.2009.12.004
- J. S. Sanchez, M. T. F. Ponce, L. Casas, C. Mantell, J. Martinez, and I. Ossa, Impregnation of Polyester Fibers in Supercritical Carbon Dioxide, Applied Polymer Science, 128, 208(2017).
- H. Sung and J. Shim, Solubility of C. I. Disperse Red 60 and C.I. Disperse Blue 60 in Supercritical Carbon Dioxide, J. of Chemical and Engineering Data, 44(5), 985 (1999). https://doi.org/10.1021/je990018t
- I. Tabata, J. Lyu, S. Cho, and T. Hori, Relationship Between the Solubility of Disperse Dyes and Equilibrium Dye Adsorption in Supercritical Fluid Dyeing, Color Technol, 117(6), 346(2001). https://doi.org/10.1111/j.1478-4408.2001.tb00088.x
-
T. Hori, K. Hirogaki, and I. Tabata, Present Situation of Supercritical Fluid Dyeing and Finishing, 1st International Symposium on Supercritical
$CO_2$ Dyeing and Finishing, Daegu, pp.1-3, 2018.