DOI QR코드

DOI QR Code

호화 옥테닐 호박산 전분의 유화 특성

Emulsifying Properties of Gelatinized Octenyl Succinic Anhydride Modified starch from Barley

  • 김산성 (충남대학교 농업생명과학대학 식품공학과) ;
  • 김선형 (충남대학교 농업생명과학대학 식품공학과) ;
  • 이의석 (충남대학교 농업생명과학대학 식품공학과) ;
  • 이기택 (충남대학교 농업생명과학대학 식품공학과) ;
  • 홍순택 (충남대학교 농업생명과학대학 식품공학과)
  • Kim, San-Seong (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Sun-Hyung (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Eui-Seok (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hong, Soon-Taek (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2019.02.18
  • 심사 : 2019.03.29
  • 발행 : 2019.03.31

초록

본 연구는 OSA 전분을 열처리 한 후, 이를 이용하여 제조한 OSA 전분 에멀션의 이화학적 특성 및 계면 흡착 구조 등을 조사하였다. 에멀션 중 지방구의 크기는 OSA 전분 농도의 증가와 더불어 지속적으로 감소하여 0.2 wt% 농도에서 최소값($0.31{\pm}0.01{\mu}m$)을 나타내었고, 그 이상의 농도에서는 변화가 없었다. 에멀션의 크리밍 안정도는 OSA 전분 농도가 높을수록 증가하였으며, 0.75 wt% 이상의 첨가 농도에서 크리밍 발생에 대하여 매우 안정하였다. 에멀션 중 OSA 전분의 계면 흡착량은 0.2 wt% 첨가 농도 이상에서 농도의 증가와 더불어 증가하였으며(0.2 wt% : $1.03mg/m^2$ ${\rightarrow}$ 1.25 wt% : $5.08mg/m^2$), 이는 계면에서 OSA 전분이 다층 구조를 이루는 것에 기인된 것으로 추정하였다. OSA 전분 에멀션의 pH를 조절하였을 때 산성 지역에서 지방구의 응집에 의해 크기가 증가하였으며, 이는 상대적으로 낮은 제타 전위에 기인된 것으로 사료되었다. 터비스캔에 의한 분산 안정도 또한 pH에 영향을 받아 산성 지역에서 낮았으며, pH 7 이상에서는 높은 분산 안정도 특성을 보였다. 공초점현미경을 이용하여 열처리된 OSA 전분이 흡착된 지방구 표면을 관찰한 결과, OSA 전분은 입자 형태가 아닌 두꺼운 계면막을 형성하는 것으로 나타났다. 따라서 에멀션 형성 전에 OSA 전분을 열처리할 경우, 전분의 호화과정에서 용출된 아밀로오스와 아밀로펙틴이 지방구 표면에 막의 형태로 흡착되므로, OSA 전분 에멀션에 있어서 중요한 유화 안정화 기작은 '입체장애 안정화(steric stabilization)'인 것으로 사료되었다.

The present study was carried out to investigate the emulsifying properties of heat-treated octenyl succinic anhydride(OSA) starch and the interfacial structure at oil droplet surface in emulsions stabilized by heat-treated OSA starch. First, the aqueous suspensions of OSA starch were heated at $80^{\circ}C$ for 30 min. Oil-in-water emulsions were then prepared with the heat-treated OSA starch suspension as sole emulsifier and their physicochemical properties such as fat globule size, surface load, zeta-potential, dispersion stability, confocal laser scanning microscopic image(CLSM) were determined. It was found that fat globule size decreased as the concentration of OSA starch in emulsions increased, showing a lower limit value ($d_{32}:0.31{\mu}m$) at ${\geq}0.2wt%$. Surface load increased steadily with increasing OSA starch concentration in emulsions, possibly forming multiple layers. In addition, fat globule sizes were also influenced by pH: they were increased in acidic conditions and these results were interpreted in view of the change in zeta potentials. The dispersion stability by Turbiscan showed that it was more unstable in emulsions at acidic condition. Heat-treated OSA starch found to adsorb at the oil droplet surface as some forms of membrane (not starch granules), which might be indicative of stabilizing mechanism of OSA starch emulsions to be steric forces.

키워드

HGOHBI_2019_v36n1_174_f0001.png 이미지

Fig. 1. Fat globule sizes (d32) in OSA-starch emulsions (10 wt% oil, pH 7) versus concentrations (0.1-1.25 wt% OSA-starch).

HGOHBI_2019_v36n1_174_f0002.png 이미지

Fig. 2. Optical microscopic images of OSA-starch granules (a: raw OSA starch; b: Heat-treated at 80℃ for 30 min, before homogenization; c: Heattreated at 80℃ for 30 min, after homogenization).

HGOHBI_2019_v36n1_174_f0003.png 이미지

Fig. 3. Changes in surface load (Γ) of OSAstarch emulsions versus concentrations (0.1-1.25 wt% OSA-starch).

HGOHBI_2019_v36n1_174_f0004.png 이미지

Fig. 4. Changes in creaming index of emulsions stabilized with various concentration of OSA-starch (0.1-0.5 wt%) versus storage time.

HGOHBI_2019_v36n1_174_f0005.png 이미지

Fig. 5. Changes in fat globule sizes (d32) (a) and zeta-potential values (b) in 0.5% OSA-starch emulsions versus pH.

HGOHBI_2019_v36n1_174_f0006.png 이미지

Fig. 6. Optical microscopic images of 0.5 wt% OSA-starch emulsions at pH 3 and 7.

HGOHBI_2019_v36n1_174_f0007.png 이미지

Fig. 7. Changes in dispersion stability of OSA-starch emulsions (0.5 % OSA-starch, 10% oil) with pH (a: pH 3.0, b: pH 6.0, c: pH 7.0, d: pH 9.0).

HGOHBI_2019_v36n1_174_f0008.png 이미지

Fig. 8. Mean migration velocity of fat globules in emulsions (0.5 wt% OSA-starch, 10 wt% oil) with pH.

HGOHBI_2019_v36n1_174_f0009.png 이미지

Fig. 9. CLSM images of fat globules in emulsions (0.3 wt% OSA-starch, 10 wt% oil, pH 7) stabilized by heat-treated OSA-starch (a: Nile red, b: Con A-FITC, c: a and b were superimposed, d: magnified image).

Table 1. The particle size of 1% OSA-starch suspensions as affected by heat and high pressure treatments

HGOHBI_2019_v36n1_174_t0001.png 이미지

참고문헌

  1. Y. J. Jeon, T. Vasanthan, F. Temelli, B. K. Song, "The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavor encapsulation", Food Res. Int., Vol.36, No.4 pp. 349-355, (2003). https://doi.org/10.1016/S0963-9969(02)00226-0
  2. F. E. Ortega-Ojeda, H. Larsson, A. C. Eliasson, "Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch", Carbohydr Polym., Vol.59, No.3, pp. 313-327, (2005). https://doi.org/10.1016/j.carbpol.2004.10.011
  3. L. Ren, M. Jiang, J. Tong, X. Bai, "Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films", Carbohydr Polym., Vol.82, No.3 pp. 1010-1013, (2010). https://doi.org/10.1016/j.carbpol.2010.05.041
  4. S. Sarka, R. S. Singhal, "Esterification of guar gum hydrolysate and gum Arabic with n-octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation", Carbohydr Polym., Vol.86, No.4 pp. 1723-1731, (2011). https://doi.org/10.1016/j.carbpol.2011.07.003
  5. C. Li, X. Fu, F. Luo, Q. Huang, "Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch", Food Hydrocolloid., Vol.32, No.1 pp. 79-86, (2013). https://doi.org/10.1016/j.foodhyd.2012.12.004
  6. J. D. Ntawukulilyayo, S. C. De Smedt, J. Demeester, J. P. Remon, "Stabilisation of suspensions using sucrose esters and low substituted n-octenylsuccinate starch-xanthan gum associations", Int. J. Pharm., Vol.128, No.1-2 pp. 73-79, (1996). https://doi.org/10.1016/0378-5173(95)04223-7
  7. L. Baydoun, P. Furrer, R. Gurny, C. C. Muller-Goymann, "New surface-active polymers for ophthalmic formulations: evaluation of ocular tolerance", Eur. J. Pharm. Biopharm, Vol.58, No.1 pp. 169-175, (2004). https://doi.org/10.1016/j.ejpb.2004.03.005
  8. L. Nilsson, B. Bergenstahl, "Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces", J. Colloid Interf. Sci., Vol.308, No.2 pp. 508-513, (2007). https://doi.org/10.1016/j.jcis.2007.01.024
  9. F. Mattea, A. Marin, A. Matias-Gago, M. J. Cocero, "Supercritical antisolvent precipitation from an emulsion: ${\beta}$-Carotene nanoparticle formation", J. Supercrit. Fluids., Vol.51, No.2 pp. 238-247, (2009). https://doi.org/10.1016/j.supflu.2009.08.013
  10. S. J. Reiner, G. A. Reineccius, T. L. Peppard, "A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers", J. Food Sci., Vol.75, No.5 pp. E236-E246, (2010). https://doi.org/10.1111/j.1750-3841.2010.01520.x
  11. S. Rodriguez-Rojo, S. Varona, M. Nunez, M. J. Cocero, "Characterization of rosemary essential oil for biodegradable emulsions", Ind. Crops Prod., Vol.37, No.1 pp. 137-140, (2012). https://doi.org/10.1016/j.indcrop.2011.11.026
  12. S. Abbas, M. Bashari, W. Akhtar, W. W. Li, X. Zhang, "Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch", Ultrason Sonochem., Vol.21, No.4 pp. 1265-1274, (2014). https://doi.org/10.1016/j.ultsonch.2013.12.017
  13. L. Mao, D. Xu, J. Yang, F. Yuan, Y. Gao, J. Zhao, "Effects of small and large molecule emulsifiers on the characteristics of ${\beta}$-carotene nanoemulsions prepared by high pressure homogenization" Food Technol. Biotechnol., Vol.47, No.3 pp. 336-342. (2009).
  14. S. Tesch, C. Gerhards, H. Schubert, "Stabilization of emulsions by OSA starches", J. Food Eng., Vol.54, No.2 pp. 167-174, (2002). https://doi.org/10.1016/S0260-8774(01)00206-0
  15. R. Charoen, A. Jangchud, K. Jangchud, T. Harnsilawat, O. Naivikul, D. J. McClements, "Influence of biopolymer emulsifier type on formation and stability of rice bran oil‐in‐water emulsions: whey protein, gum arabic, and modified starch", J. Food Sci., Vol.76, No.1 pp. E165-E172, (2011). https://doi.org/10.1111/j.1750-3841.2010.01959.x
  16. L. Nilsson, B. Bergenstahl, "Emulsification and adsorption properties of hydrophobically modified potato and barley starch", J. Agric. Food Chem., Vol.55, No.4 pp. 1469-1474, (2007b). https://doi.org/10.1021/jf062087z
  17. S. Varona, A. Martin, M. J. Cocero, "Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches", Chem. Eng. Process., Vol.48, No.6 pp. 1121-1128, (2009). https://doi.org/10.1016/j.cep.2009.03.002
  18. A. Yusoff, B. S. Murray, "Modified starch granules as particle-stabilizers of oil-in-water emulsions", Food Hydrocolloid., Vol.25, No.1 pp. 42-55, (2011). https://doi.org/10.1016/j.foodhyd.2010.05.004
  19. A. Timgren, M. Rayner, M. Sjoo, P. Dejmek, "Starch particles for food based pickering emulsions", Proc. Food Sci., Vol.1, pp. 95-103, (2011). https://doi.org/10.1016/j.profoo.2011.09.016
  20. M. Sjoo, S. C. Emek, T. Hall, M. Rayner, M. Wahlgren. "Barrier properties of heat treated starch pickering emulsions", J Colloid Interface Sci., Vol.450, No.15 pp. 182-188. (2015). https://doi.org/10.1016/j.jcis.2015.03.004
  21. Y. S. Jeong, J. W. Kim, E. S. Lee, Y. Y. Han, N. Y. Gil, M. J. Lee, G. H. Lee, S. T. Hong, "Studies on physico-chemical characterization of starch extracted from domestic barley cultivars", Food Eng. Prog., Vol.17, No.3 pp. 203-211, (2013). https://doi.org/10.13050/foodengprog.2013.17.3.203
  22. B. Zhang, Q. Huang, F. X. Luo, X. Fu, H. Jiang, J. L. Jane, "Effects of octenyl succinylation on the structure and properties of high-amylose maize starch", Carbohydr Polym., Vol.84, No.4 pp. 1276-1281, (2011). https://doi.org/10.1016/j.carbpol.2011.01.020
  23. D. K. Kweon, J. K. Choi, E. K. Kim, "Adsorption of divalent metal ions by succinylated and oxidized corn starches", Carbohydr. Polym., Vol.46, No.2 pp. 171-177, (2001). https://doi.org/10.1016/S0144-8617(00)00300-3
  24. Y. S. Jeong, J. S. Bae, J. W. Kim, E. S. Lee, K. T. Lee, M. J. Lee, S. T. Hong, "Optimization of ${\beta}$-Glucanase-assisted extraction of starch from domestic waxy barley and its physicochemical properties", J. East Asian Diet. Life., Vol.23, No.6 pp. 789-798, (2013).
  25. Z. Luo, B. S. Murray, A. L. Ross, M. J. W. Povey, M. R. A. Morgan, A. Day, "Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers", Colloid. Surfaces B., Vol.92, No.1 pp. 84-90, (2011).
  26. L. Nilsson, B. Bergenstahl, "Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification", Langmuir., Vol.22, No.21 pp. 8770-8776, (2006). https://doi.org/10.1021/la060870f
  27. D. Yang, X. Y. Wang, L. J. Gan, H. Zhang, J. A. Shin, K. T. Lee, S. T. Hong, "Effects of flavonoid glycosides obtained from a Ginkgo biloba extract fraction on the physical and oxidative stabilities of oil-in-water emulsions prepared from a stripped structured lipid with a low omega-6 to omega-3 ratio", Food Chemistry, Vol.174, No.1 pp. 124-131, (2015). https://doi.org/10.1016/j.foodchem.2014.11.036
  28. J. Liu, X. Huang, L. Lu, M. Li, J. Xu, H. Deng, "Turbiscan Lab(R) Expert analysis of the biological demulsification of a water-in-oil emulsion by two biodemulsifiers", J. Hazard. Mater., Vol.190, No.1-3 pp. 214-221, (2011). https://doi.org/10.1016/j.jhazmat.2011.03.028
  29. M. Miao, R. Li, B. Jiang, S. W. Cui, T. Zhang, Z. Jin, "Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch", Food Chemistry, Vol.151, No.15 pp. 154-160, (2104). https://doi.org/10.1016/j.foodchem.2013.11.043
  30. S. D. Fowler, P. Greenspan, "Application of nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O", J. Histochem. Cytochem., Vol.33, NO.8 pp. 833-836, (1985). https://doi.org/10.1177/33.8.4020099
  31. M. Y. Chen, D. J. Lee, J. H, Tay, K. Y. Show, "Staining of extracellular polymeric substances and cells in bioaggregates", Appl. Microbiol. Biot., Vol.75, No.2 pp. 467-474, (2007). https://doi.org/10.1007/s00253-006-0816-5
  32. W. Klaypradit, Chitosan-based encapsulation for tuna-oil. ph. D. thesis. University of Georgia, Athens, USA, (2006).
  33. A. Timgren, M. Rayner, P. Dejmek, D. Marku, M. Sjoo, "Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride", Food science & nutrition, Vol.1, No.2 pp. 157-171, (2013). https://doi.org/10.1002/fsn3.17
  34. M. Stolt, S. Oinonen, K. Autio, "Effect of high pressure on the physical properties of barley starch", Innovative Food Sci. Emerg., Vol.1, No.3 pp. 167-175, (2000). https://doi.org/10.1016/S1466-8564(00)00017-5
  35. D. J. McClements. Food emulsions: Principles, practices, and techniques. p.15, CRC Press, (2015).
  36. L. Dokic, V. Krstonosic, I. Nikolic, 2012. "Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch", Food Hydrocolloid., Vol.29, No.1 pp. 185-192, (2012). https://doi.org/10.1016/j.foodhyd.2012.02.008
  37. L. Liu, Q. Zhao, T. Liu, J. Kong, Z. Long, M. Zhao, "Sodium caseinate/carboxymethylcellulose interactions at oil-water interface: Relationship to emulsion stability", Food Chemistry, Vol.132, No.4 pp. 1822-1829, (2012). https://doi.org/10.1016/j.foodchem.2011.12.014
  38. E. Magnusson, L. Nilsson, "Interactions between hydrophobically modified starch and egg yolk proteins in solution and emulsions", Food Hydrocolloid., Vol.25, No.4 pp. 764-772, (2011). https://doi.org/10.1016/j.foodhyd.2010.09.006