DOI QR코드

DOI QR Code

베타-갈락토시데이즈를 이용하여 합성된 Benzyl Alcohol Galactoside의 NMR Spectroscopy 및 Mass spectrometry

NMR Spectroscopy and Mass Spectrometry of Benzyl Alcohol Galactoside synthesized using β-Galactosidase

  • 이향렬 (한국교통대학교 생명공학과) ;
  • 정경환 (한국교통대학교 생명공학과)
  • Lee, Hyang-Yeol (Department of Biotechnology, Korea National University of Transportation) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
  • 투고 : 2019.03.08
  • 심사 : 2019.03.22
  • 발행 : 2019.03.31

초록

대장균 효소 ${\beta}$-gal를 이용하여 합성된 BzO-gal의 분자구조를 NMR ($^1H$-와 $^{13}C$-)과 고성능 mass spectrometry를 이용하여 분석하였다. BzO-gal은 $^1H$ NMR에서 14개의 proton으로부터 12개의 피크를 나타내었다. 방향족 고리에서 오는 5개의 proton 피크와 벤질기의 $CH_2$에서 오는 2개의 proton 피크는 벤질알코올이 존재함을 나타낸다. 지방족 사슬 영역인 ${\delta}_H$ 4.32 ~ 3.46 ppm에서 나타나는 7개의 proton 피크로부터 단당류가 도입되었음을 확인할 수 있었다. $^{13}C$ NMR 스팩트럼에서 나타난 11개의 carbon 피크도 또한 벤질알코올에 단당이 도입되었음을 나타낸다. BzO-gal의 분자량을 확인하기 위하여 mass spectrometry 로 분석한 결과 m/z가 293.0994인 BzO-gal의 sodium adduct ion($[M+Na]^+$)을 확인할 수 있었다. 이러한 결과를 바탕으로 세포독성이 감소된 첨가물 개발을 기대하고 있으며, 추가적인 후속연구를 진행할 예정이다.

To characterize the molecular structure of BzO-gal synthesized using Escherichia coli ${\beta}$-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of BzO-gal were conducted. $^1H$ NMR spectrum of BzO-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on BzOH. Five proton peaks around the aromatic region at ${\delta}_H$ 7.43 ~ 7.24 ppm and 2 peaks from ${\delta}_H$ 4.93 and 4.67 ppm were evidence of the presence of the benzyl group. Seven proton peaks at ${\delta}_H$ 4.32 ~ 3.46 ppm showed the presence of a monosaccharide and were indicative of galactosylation on BzOH. $^{13}C$ NMR spectrum also revealed the presence of 11 carbons suggestive of BzO-gal. The mass value (sodium adduct ion of BzO-gal, m/z = 293.0994) from mass spectrometry analysis of BzO-gal, and $^1H$ and $^{13}C$ NMR spectral data were in good agreement with the expecting structure of BzO-gal. We are expecting that through future study it will eventually be able to develop a new additive of low cytotoxicity.

키워드

HGOHBI_2019_v36n1_84_f0001.png 이미지

Fig. 1. 1H-NMR spectrum of BzO-gal.

HGOHBI_2019_v36n1_84_f0002.png 이미지

Fig. 3. Mass spectrum of BzO-gal using ESI-MS. Arrow indicates a peak of sodium adduct ion of BzO-gal ([M+Na]+). In addition, molecular structure of [M+Na]+ is shown beside the arrow.

HGOHBI_2019_v36n1_84_f0003.png 이미지

Fig. 2. 13C-NMR spectrum of BzO-gal.

HGOHBI_2019_v36n1_84_f0004.png 이미지

Fig. 4. Transgalactosylation reaction of BzOH using β-gal.

참고문헌

  1. D. Melisi, A. Curcio, E. Luongo, E. Morelli, M. G. Rimoli, "D-Galactose as a vector for prodrug design", Curr. Top. Med. Chem., Vol,11, No.18, pp. 2288-2298, (2011). https://doi.org/10.2174/156802611797183258
  2. H. Devalapally, K. S. Rajan, R. R. Akkinepally, R. K. Devarakonda, "Safety, pharmacokinetics and biodistribution studies of a ${\beta}$-galactoside prodrug of doxorubicin for improvement of tumor selective chemotherapy", Drug Dev. Ind. Pharm., Vol.34, No.8, pp. 789-795, (2008). https://doi.org/10.1080/03639040701744202
  3. S. E. Lee, T. M. Jo, H. Y. Lee, J. Lee, K. -H. Jung, "${\beta}$-Galactosidase-catalyzed synthesis of galactosyl chlorphenesin and its characterization", Appl. Biochem. Biotechnol., Vol.171, No.6, pp. 1299-1312, (2013). https://doi.org/10.1007/s12010-013-0213-3
  4. S. E. Lee, H. Y. Lee, K. -H. Jung, "Production of chlorphenesin galactoside by whole cells of ${\beta}$-galactosidase-containing Escherichia coli", J. Microbiol. Biotechnol., vol.23, No.6, pp. 826-832, (2013). https://doi.org/10.4014/jmb.1211.11009
  5. K. -H. Jung, H. Y. Lee, "Escherichia coli ${\beta}$-galactosidase-catalyzed synthesis of 2-phenoxyethanol galactoside and its characterization", Bioprocess Biosyst. Eng., Vol.38, No.2, pp. 365-372, (2015). https://doi.org/10.1007/s00449-014-1276-4
  6. H. Y. Lee, K. -H. Jung, "Enzymatic synthesis of 2-phenoxyethanol galactoside by whole cells of ${\beta}$-galactosidase-containing Escherichia coli", J. Microbiol. Biotechnol., Vol.24, No.9, pp. 1254-1259, (2014). https://doi.org/10.4014/jmb.1404.04004
  7. Y. -O. Kim, K. -H. Jung, "Enzymatic synthesis of 1, 2-hexandiol galactoside by whole cells of ${\beta}$-galactosidase-containing recombinant Escherichia coli", J. Life Sci., Vol.26, No.5, pp. 608-613, (2016). https://doi.org/10.5352/JLS.2016.26.5.608
  8. Y. -O Kim, H. Y. Lee, K. -H. Jung, "NMR spectroscopy and mass spectrometry of 1, 2-hexanediol galactoside synthesized using Escherichia coli ${\beta}$-galactosidase", J. Korean Oil Chemists' Soc., Vol.33, No.2, pp. 286-292, (2016). https://doi.org/10.12925/jkocs.2016.33.2.286
  9. J. -S. Kim, K. -H. Jung, "Cytotoxic effects of 1, 2-hexanediol and 1, 2-hexanediol galactoside on HaCaT cell", J. Soc. Cosmet. Sci. Korea, Vol.44, No.3, pp. 343-347, (2018). https://doi.org/10.15230/SCSK.2018.44.3.343
  10. Y. -O. Kim, K. -H. Jung, "Water-holding capacity and antimicrobial activity of 1, 2-hexanediol galactoside synthesized by ${\beta}$-galactosidase", J. Soc. Cosmet. Sci. Korea, Vol.43, No.4, pp. 373-379, (2017). https://doi.org/10.15230/SCSK.2017.43.4.373
  11. S. Sestini, M. Mori, S. Francalanci, "Allergic contact dermatitis from benzyl alcohol in multiple medicaments", Contact Dermatitis, Vol.50, No.5, pp. 316-317, (2004). https://doi.org/10.1111/j.0105-1873.2004.00341c.x
  12. M. Corazza, L. Mantovani, C. Maranini, A. Virgli, "Allergic contact dermatitis from benzyl alcohol", Contact Dermatitis, Vol.34, No.1, pp. 74-75, (1996). https://doi.org/10.1111/j.1600-0536.1996.tb02129.x
  13. E. J. Curry, E. M. Warshaw, "Benzyl alcohol allergy: Importance of patch testing with personal products", Dermatitis, Vol.16, No.4, pp. 203-208, (2005). https://doi.org/10.1097/01206501-200512000-00003
  14. E. Shmunes, "Allergic dermatitis to benzyl alcohol in an injectable solution", Arch. Dermatol., Vol.120, No.9, pp. 1200-1201, (1984). https://doi.org/10.1001/archderm.1984.01650450082024
  15. K. -H. Jung, "Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli", J. Microbiol. Biotechnol., Vol.18, No.3, pp. 434-442, (2008).
  16. K. -H. Jung, "Purifications of phenoxyethanol galactoside and chlorphenesin galactoside using solvent extraction followed by gel chromatography", J. Oil & Applied Science, Vol.34, No.4, pp. 954-961, (2017). https://doi.org/10.12925/JKOCS.2017.34.4.954
  17. Y. -O. Kim, K. -H. Jung, "${\beta}$-Galactosidase-catalyzed synthesis of 1, 2-hexanediol galactoside and its purification using ethyl acetate extraction followed by silica gel chromatography", J. Korean Oil Chemists' Soc., Vol.33 No.3, pp. 498-506, (2016). https://doi.org/10.12925/jkocs.2016.33.3.498
  18. D. O. Otieno, "Synthesis of ${\beta}$-Galactooligosaccharides from lactose using microbial ${\beta}$-galactosidases", Compr. Rev. Food Sci. Food Saf., Vol.9, pp. 410-482, (2010). https://doi.org/10.1111/j.1541-4337.2010.00121.x

피인용 문헌

  1. 대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry vol.37, pp.5, 2020, https://doi.org/10.12925/jkocs.2020.37.5.1323