Fig. 1. Architecture of ECC processor in GF(2m). 그림 1. GF(2m) 상의 ECC 프로세서 구조
Fig. 2. Pseudo-code for word-based Montgomery multiplication algorithm. 그림 2. 워드 기반 몽고메리 곱셈 알고리듬의 슈도코드
Fig. 3. Word-based Montgomery multiplier. 그림 3. 워드 기반 몽고메리 곱셈기
Fig. 4. State transition diagram of control FSM. 그림 4. 제어 FSM의 상태 천이도
Fig. 5. Pseudo code for point operations using Lopez- Dahab’s coordinate, (a) point addition, (b) point doubling. 그림 5. Lopez-Dahab 좌표계를 사용하는 점 연산 슈도코드, (a) 점 덧셈, (b) 점 두 배
Fig. 6. RTL simulation results for scalar multiplication of ECC processor, (a) 233-bit pseduo-random curve, (b) 233-bit Koblitz curve. 그림 6. ECC 프로세서의 스칼라 곱셈 연산에 대한 RTL 시뮬레이션 결과 (a) 233-비트 슈도 랜덤 커브, (b) 233-비트 Koblitz 커브
Fig. 7. FPGA verification platform for ECC processor. 그림 7. ECC 프로세서의 FPGA 검증 플랫폼
Fig. 8. Screenshots of FPGA verification results of the ECC processor, (a) ECDH using 571-bit pseudo-random curve, (b) ECDH using 571-bit Koblitz curve. 그림 8. ECC 프로세서의 FPGA 검증결과 화면, (a) 571-비트 슈도 랜덤 커브를 이용한 ECDH, (b) 571-비트 Koblitz 커브를 이용한 ECDH
Table. 1. Point addition and point doubling operations of elliptic curves over GF(2m). 표 1. GF(2m) 상의 타원곡선 점 덧셈과 점 두 배 연산
Table. 2. Data n*0 according to elliptic curves. 표 2. 타원곡선에 따른 데이터 n*0
Table. 3. Clock cycles required for scalar multiplication. 표 3. ECC 스칼라 곱셈의 소요 클록 사이클 수
Table 4. Comparison of ECC processors. 표 4. ECC 프로세서의 비교
참고문헌
- A. Firestone, "Information Security Overview," Security Industry Association, pp. 1-25, 2018.
- R. Rivest, A. Shamir and L. Adleman, "A method for obtaining Digital Signatures and Public-Key Crypto-systems," Communications of Association for Computing Machinery (ACM), vol. 21, no. 2, pp. 120-126, 1978. DOI: 10.1145/359340.359342
- NIST Std. FIPS PUB 186-2, Digital Signature Standard (DSS), National Institute of Standard and Technology (NIST), 2000.
- N. Koblitz, "Elliptic Curve Cryptosystems," Mathematics of Computation, vol. 48, no. 177, pp. 203-309, 1987. DOI: 10.1090/S0025-5718-1987-0866109-5
- V. S. Miller, "Uses of Elliptic Curves in Cryptography," Advances in cryptography-CRYPTO'85, LNCS 218, Springer-Verlag, pp. 417-426, 1986. DOI: 10.1007/3-540-39799-X_31
- H. Marzouqi, M. Al-Qutayri and K. Salah, "Review of Elliptic Curve Cryptography processor designs," Microprocessors and Microsystems, vol. 39, pp. 97-112, 2015. DOI: 10.1016/j.micpro.2015.02.003
- B. G. Park and K. W. Shin, "A Lightweight ECC Processor Supporting Elliptic Curves over NIST Prime Fields," Journal of The Institute of Electronics and Information Engineers, vol. 55, no. 9, pp. 35-43, 2018. DOI: 10.5573/ieie.2018.55.9.35
- P. M. Matutino, J. Araújo, L. Sousa and R. Chaves, "Pipelined FPGA coprocessor for elliptic curve cryptography based on residue number system," 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation(SAMOS), Pythagorion, pp. 261-268, 2017. DOI: 10.1109/SAMOS.2017.8344638
- Z. He and X. Chen, "Design and implementation of high-speed configurable ECC co-processor," 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, pp. 734-737, 2017. DOI: 10.1109/ASICON.2017.8252580
- K. M. John and S. Sabi, "A novel high performance ECC processor architecture with two staged multiplier," 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), Karur, pp. 1-5, 2017. DOI: 10.1109/ICEICE.2017.8191885
-
K. C. Cinnati Loi, Sen An and Seok-Bum Ko, "FPGA Implementation of Low Latency Scalable Elliptic Curve Cryptosystem Processor in
$GF(2^m)$ " Proceedings of 2014 IEEE International Symposium on Circuits and Systems (ISCAS'14), Melbourne, pp. 822-825, 2014. DOI: 10.1109/ISCAS.2014.6865262 - M. S. Hossain, E. Saeedi, and Y. Kong. "High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic Processor over NIST Binary Fields," Data Science and Data Intensive Systems (DSDIS), 2015 IEEE International Conference on. IEEE, 2015. pp. 175-181. DOI: 10.1109/DSDIS.2015.44
- B. G. Park, and K. W. Shin, "A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 7, pp. 1267-1275, 2017. https://doi.org/10.6109/JKIICE.2017.21.7.1267
- L. Li and S. Li, "High-Performance Pipelined Architecture of Point Multiplication on Koblitz Curves," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1723-1727, 2018. DOI: 10.1109/TCSII.2017.2785382
- C. K. koc, T. Acar, and B. S. Kaliski, "Analyzing and comparing Montgomery multiplication algorithms," IEEE Micro, vol. 16, no. 3, pp. 26-33, 1996. DOI: 10.1109/40.502403
- P. L. Montgomery, "Speeding the Pollard and elliptic curve methods of factorization," Mathematics of computation, vol. 48, no. 177 pp. 243-264, 1987. DOI: 10.1090/S0025-5718-1987-0866113-7
- TTA Std. TTAK.KO-12.0015/R1, Digital Signature Mechanism with Appendix (Part 3) Korean Certificate-based Digital Signature Algorithm using Elliptic Curves, Telecommunications Technology Association (TTA), 2012.