Fig. 1. Indoor autonomous navigation robot system. 그림 1. 실내 자율주행 로봇 시스템
Fig. 2. Implemented mobile robot. 그림 2. 구현된 이동 로봇
Fig. 3. Navigation using LiDAR based obstacle recognition. 그림 3. 라이다 기반 장애물 인식을 이용한 내비게이션
Fig. 4. The process of extracting 3D structure information. 그림 4. 3차원 구조물 정보 추출 과정
Fig. 5. Darknet-19 YOLO architecture. 그림 5. Darknet-19 YOLO 구조
Fig. 6. An example showing 3D object recognition procedure. 그림 6. 3차원 구조물 인식 절차를 보이는 예
Fig. 7. Comparison of scan information. 그림 7. 스캔 정보의 비교
Fig. 8. Experiments for indoor autonomous navigation avoiding 3D structure. 그림 8. 3차원 구조물을 회피하는 실내 자율주행 실험
참고문헌
- K. T. Park and D. H. Kim, "Technology trend of smart mobile robot," Proc. 13th Int. Conf. Control, Automation and Systems (ICCAS 2013), pp. 1149-1151, 2013. DOI: 10.1109/ICCAS.2013.6704090
- S. H. Kim, "Trend of robot vision technology for intelligent mobile robot," J. Korea Robot. Soc., vol. 9 no. 1, pp. 26-35, 2012.
- I. H. Hwang and K. G. Kim, "Implementation and evaluation of a robot operating system-based virtual Lidar driver," KIISE Trans. Computing Practices, vol. 23, no. 10, pp. 588-593, 2017. DOI: 10.5626/KTCP.2017.23.10.588
- J .S. Kim, "RGB-D camera application research trend," J. Korea Robot. Soc., vol. 8, no. 3, pp. 29-36, 2011.
- U. S. Pyo, "TurteBot3-ROBOTIS e- Manual," http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
- L. Joseph, "GitHub Learning Robotics using Python Chefbot_ROS_pkg," https://github.com/qboticslabs/Chefbot_ROS_pkg
- H. Y. Chen, D. Sun, J. Yang, and W. Shang, "Orientation correction based monocular SLAM for a mobile robot," Proc. the 2008 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 1378-1383, 2008. DOI: 10.1109/AIM.2008.4601863
- E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," Proc. IEEE Int. Conf. Comput. Vision, pp. 2564-2571, 2011. DOI: 10.1109/ICCV.2011.6126544
- B. Kwon, D. H. Jeon, J. Y. Kim, J. H. Kim, D. Y. Kim, H. W. Song, and S. H. Lee, "Framework implementation of image-based indoor localization system using parallel distributed computing," J. Korean Inst. Commun. Inf. Sci., vol.41, no.11, pp. 1490-1501, 2016. https://doi.org/10.7840/kics.2016.41.11.1490
- C. A. Kapoutsis, C. P. Vavoulidis, and I. Pitas, "Morphological iterative closest point algorithm," IEEE Trans. Image Process., vol. 8, no. 11, pp. 1644-1646, 1999. DOI: 10.1109/83.799892
- T. J. Oh, S. W. Chung, K. Y. Jung, P. L. Yoon, J. H. Kim, and H. Myung, "Robot navigation and SLAM technology: Application examples of SLAM technology in various environments," J. Korea Robot. Soc., vol. 15, no. 2, pp. 19-25, 2018.
- A. Krizhevshy, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.
- J. C. Redmon, "Darknet Neural Network Framework," http://pjreddie.com/
- J. Redmo, S. Divvala, R. Girshick, and A. Farhaid, "You Only Look Once: Unified, real-time object detection," Proc. The IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016.
- S. Madgwick, A. Harrison, and A. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," Proc. IEEE Int. Conf. Rehabil. Robot, pp. 1-7, 2011. DOI: 10.1109/ICORR.2011.5975346
- G. Grisetti, C. Stachnniss, and W. Burgard, "Open SLAM gmapping," https://openslamorg.github.io/gmapping.html
- J. Redmon and A. Farhadi, "YOLO9000: Better, faster, stronger," Proc. The IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 7263-7271, 2017.