초록
소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 패턴 인식 문제로 해결하고자 한다. 본 논문에서 DWT와 인공신경망 기반 패턴 인식 기법을 이용한 자동화 기계 고장 진단 기법을 제안한다. 기계의 결함을 효과적으로 탐지하기 위해 DWT를 이용해 대역별 분해 후 최상위 고주파 부대역과 최하위 저주파 부대역을 제외한 나머지 부대역의 PSD를 구하여 인공신경망 기반 분류기의 입력으로 사용한다. 그 결과 본 연구에서 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있음을 보여준다.
Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically abnormal sound on machines using the acoustic emission by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose here an automatic fault diagnosis method of hand drills using discrete wavelet transform(DWT) and pattern recognition techniques such as artificial neural networks(ANN). We first conduct a filtering analysis based on DWT. The power spectral density(PSD) is performed on the wavelet subband except for the highest and lowest low frequency subband. The PSD of the wavelet coefficients are extracted as our features for classifier based on ANN the pattern recognition part. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.