DOI QR코드

DOI QR Code

A study on configuration of acoustic package for towed array sonar using design of experiments

실험계획법을 이용한 예인 음탐기용 음향패키지 형상 연구

  • 이정현 (국방과학연구소 제6기술연구본부) ;
  • 신증호 (국방과학연구소 제6기술연구본부) ;
  • 권오조 (국방과학연구소 제6기술연구본부) ;
  • 김군칠 (국방과학연구소 제6기술연구본부)
  • Received : 2018.11.10
  • Accepted : 2019.03.26
  • Published : 2019.03.31

Abstract

In this paper, the characteristics of receiving voltage sensitivity about acoustic package in towed array sonar is analyzed through the numerical simulation and design of experiments. Simulation results show that the variation of receiving voltage sensitivity is caused by the structural resonance mode shape on baseline acoustic package. The effect of design parameters of the acoustic package are analyzed through the design of experiments to reduce the deviation of receiving voltage sensitivity. A change of hydrophone shield can thickness (t) is the greatest effect on the deviation of receiving voltage sensitivity. As a result of water tank test, the acoustic package derived from the design of experiments has reduced deviation of receiving voltage sensitivity.

본 연구에서는 예인 음탐기용 음향패키지에 대한 수신전압감도 특성을 분석하기 위해 수치해석과 실험계획법을 적용하였다. 수치해석 결과는 초기 설계된 음향패키지의 구조 공진 모드 특성으로 인한 수신전압감도 변화를 보여준다. 수신전압감도 편차를 줄이기 위해 도출된 음향패키지 설계 변수의 영향은 실험계획법을 통해 분석하였다. 수신전압감도 편차는 수중청음기 쉴드캔 두께(t)의 변화에 가장 민감한 것을 확인하였다. 수조시험 결과 실험계획법에 의해 도출된 음향패키지는 수신전압감도 편차가 감소됨을 확인하였다.

Keywords

GOHHBH_2019_v38n2_200_f0001.png 이미지

Fig. 1. Configuration of acoustic package.

GOHHBH_2019_v38n2_200_f0002.png 이미지

Fig. 2. Numerical simulation model domain.

GOHHBH_2019_v38n2_200_f0003.png 이미지

Fig. 3. Simulation result of acoustic package.

GOHHBH_2019_v38n2_200_f0004.png 이미지

Fig. 4. Mode shape of acoustic package (at arrow point in Fig. 3.).

GOHHBH_2019_v38n2_200_f0005.png 이미지

Fig. 5. Main effects plot of dependent variables.

GOHHBH_2019_v38n2_200_f0006.png 이미지

Fig. 6. Pareto chart.

GOHHBH_2019_v38n2_200_f0007.png 이미지

Fig. 7. Water tank test configuration and conditions.

GOHHBH_2019_v38n2_200_f0008.png 이미지

Fig. 8. Water tank test results.

Table 1. Factors and levels.

GOHHBH_2019_v38n2_200_t0001.png 이미지

Table 2. Test condition and simulation results.

GOHHBH_2019_v38n2_200_t0002.png 이미지

References

  1. R. J. Urick, Principles of Underwater Sound, 3rd Ed. (McGraw-Hill, Washington D. C, 1983), pp. 31-46.
  2. H. S. Seo, Y. H. Cho, and C. Y. Joh, "Structural-acoustic coupled analysis of buried hydrophone system", Trans. Korean Soc. Noise Vib. Eng. 17, 797-804 (2007). https://doi.org/10.5050/KSNVN.2007.17.9.797
  3. S. Chen, W. Zhu, and Y. Cheng, "Multi-Objective optimization of acoustic performances of polyurethane foam composites," Polymers. 10, 788 (2018). https://doi.org/10.3390/polym10070788
  4. H. Kang, J. S. Jang, D. H. Kim, J. H. Kang, W. S. Yoo, and J. W. Lee, "Prediction of impact energy absorption in a high weight drop tester by response surface methodology", J. Korean Soc. Manuf. Process Engineers. 15, 44-51 (2016). https://doi.org/10.14775/ksmpe.2016.15.3.044
  5. D. Shin, C. Cheong, S. Heo, T. H. Kim, and J. Jung. "Performance/Noise optimization of centrifugal fan using response surface method", Trans. Korean Soc. Mech. Eng. 41, 165-172 (2017). https://doi.org/10.3795/KSME-A.2017.41.3.165
  6. S. N. Rim, S. R. Shin, and H. S. Shin, "A study on a-pillar & wiper wind noise estimation using response surface methodology at design stage" , J. Acoust. Soc. Kr. 37, 292-299 (2018).