Fig. 1. Configuration of acoustic package.
Fig. 2. Numerical simulation model domain.
Fig. 3. Simulation result of acoustic package.
Fig. 4. Mode shape of acoustic package (at arrow point in Fig. 3.).
Fig. 5. Main effects plot of dependent variables.
Fig. 6. Pareto chart.
Fig. 7. Water tank test configuration and conditions.
Fig. 8. Water tank test results.
Table 1. Factors and levels.
Table 2. Test condition and simulation results.
References
- R. J. Urick, Principles of Underwater Sound, 3rd Ed. (McGraw-Hill, Washington D. C, 1983), pp. 31-46.
- H. S. Seo, Y. H. Cho, and C. Y. Joh, "Structural-acoustic coupled analysis of buried hydrophone system", Trans. Korean Soc. Noise Vib. Eng. 17, 797-804 (2007). https://doi.org/10.5050/KSNVN.2007.17.9.797
- S. Chen, W. Zhu, and Y. Cheng, "Multi-Objective optimization of acoustic performances of polyurethane foam composites," Polymers. 10, 788 (2018). https://doi.org/10.3390/polym10070788
- H. Kang, J. S. Jang, D. H. Kim, J. H. Kang, W. S. Yoo, and J. W. Lee, "Prediction of impact energy absorption in a high weight drop tester by response surface methodology", J. Korean Soc. Manuf. Process Engineers. 15, 44-51 (2016). https://doi.org/10.14775/ksmpe.2016.15.3.044
- D. Shin, C. Cheong, S. Heo, T. H. Kim, and J. Jung. "Performance/Noise optimization of centrifugal fan using response surface method", Trans. Korean Soc. Mech. Eng. 41, 165-172 (2017). https://doi.org/10.3795/KSME-A.2017.41.3.165
- S. N. Rim, S. R. Shin, and H. S. Shin, "A study on a-pillar & wiper wind noise estimation using response surface methodology at design stage" , J. Acoust. Soc. Kr. 37, 292-299 (2018).