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Abstract. The object of this paper is to classify paracontact metric (k, µ)-spaces satisfy-

ing certain curvature conditions. We show that a paracontact metric (k, µ)-space is Ricci

semisymmetric if and only if the metric is Einstein, provided k < −1. Also we prove that

a paracontact metric (k, µ)-space is φ-Ricci symmetric if and only if the metric is Einstein,

provided k 6= 0,−1. Moreover, we show that in a paracontact metric (k, µ)-space with

k < −1, a second order symmetric parallel tensor is a constant multiple of the associated

metric tensor. Several consequences of these results are discussed.

1. Introduction

After being introduced by Kaneyuki and Williams [10] in 1985, a systematic
study of paracontact metric manifolds and their subclasses, especially para-Sasakian
manifolds, was carried out by Zamkovoy [21]. Paracontact metric manifolds have
been studied by several authors such as Alekseevski et. al. [1, 2], Cortés [6], Erdem
[9], Martin-Molina [12]. Recently, Cappelletti-Montano et. al. [5] introduced a new
type of paracontact geometry, so-called paracontact metric (k, µ)-spaces, where k
and µ are real constants. It is well known [3] that in the contact case one requires
k ≤ 1, but there is no such restriction for k in the paracontact case [5]. Also, in
the contact case, k = 1 implies the manifold is Sasakian but in paracontact case,
k = −1 does not imply the manifold is para-Sasakian.

Among the geometric properties of manifolds symmetry is an important one.
From the local point of view it was introduced by Shirokov [18] as a Riemannian
manifold with covariant constant curvature tensor R, that is, with ∇R = 0, where
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∇ is the Levi-Civita connection. An extensive theory of symmetric Riemannian
manifolds was carried out by Cartan in 1927. A manifold is called semisymmetric
if the curvature tensor R satisfies R(X,Y ) ·R = 0, where R(X,Y ) is considered to
be a derivation of the tensor algebra at each point of the manifold for the tangent
vectors X, Y . Semisymmetric manifolds were locally classified by Szabó [19].
A manifold is said to be Ricci semisymmetric if R(X,Y ) · S = 0 where S denotes
the Ricci tensor of type (0, 2). A general classification of these manifolds has been
worked out by Mirzoyan [13].

The notion of locally φ-symmetric was introduced by Takahashi [20] in Sasakian
geometry as a weaker version of locally symmetric manifolds. In [7], De and Sarkar
studied φ-Ricci symmetric Sasakian manifolds. Prakasha and Mirji [15] studied
φ-Ricci symmetric N(k)-paracontact metric manifolds.

Also one of the main purposes of this paper is to study Eisenhart problem. In
1923, Eisenhart [8] proved that if a positive definite Riemannian manifold admits a
second order parallel symmetric covariant tensor other than a constant multiple of
the associated metric tensor, then it is reducible. In 1925, Levy [11] proved that a
second order symmetric parallel non-singular tensor on a space of constant curvature
is a constant multiple of the associated metric tensor. Sharma [16, 17] extended
the result in contact geometry. Recently, Mondal et. al. [14] studied second order
parallel tensors on (k, µ)-contact metric manifolds. Here we consider second order
parallel symmetric covariant tensors on paracontact metric (k, µ)-spaces.

A paracontact metric (k, µ)-manifold is said to be an Einstein manifold if the
Ricci tensor satisfies S = λg, where λ is some constant.

The paper is organized as follows:
In Section 2, we provide some basic results of paracontact metric (k, µ)-manifolds.
Sections 3 and 4 are devoted to study Ricci semisymmetric and φ-Ricci symmetric
paracontact metric (k, µ)-manifolds, respectively. In Section 5, we study the exis-
tence of symmetric parallel covariant tensors on paracontact metric (k, µ)-spaces.
Several consequences of these results are discussed.

2. Preliminaries

A smooth manifold M2n+1 is said to admit an almost paracontact structure
(φ, ξ, η) if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η
satisfying [10]

(i) φ2X = X − η(X)ξ, for any vector field X ∈ χ(M), the set of all differential
vector fields on M ,

(ii) φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1,

(iii) the tensor field φ induces an almost paracomplex structure on each fibre of
D = ker(η), that is, the eigendistributions D+

φ and D−
φ of φ corresponding

to the eigenvalues 1 and −1, respectively, have same dimension n.

An almost paracontact structure is said to be normal [21] if and only if
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the (1, 2)-type torsion tensor Nφ = [φ, φ] − 2dη ⊗ ξ vanishes identically, where
[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]. An almost paracontact
manifold equipped with a pseudo-Riemannian metric g such that

(2.1) g(φX, φY ) = −g(X,Y ) + η(X)η(Y ),

for all X,Y ∈ χ(M), is called almost paracontact metric manifold, where signa-
ture of g is (n + 1, n). An almost paracontact structure is said to be a paracon-
tact structure if g(X,φY ) = dη(X,Y ) with the associated metric g [21]. For any
almost paracontact metric manifold (M2n+1, φ, ξ, η, g) admits (at least, locally)
a φ-basis [21], that is, a pseudo-orthonormal basis of vector fields of the form
{ξ, E1, E2, ..., En, φE1, φE2, ..., φEn}, where ξ, E1, E2, ..., En are space-like vector
fields and then, by (2.1) the vector fields φE1, φE2, ..., φEn are time-like. In a para-
contact metric manifold we define a symmetric, trace-free (1, 1)-tensor h = 1

2£ξφ
satisfying [21]

(2.2) φh+ hφ = 0, hξ = 0,

(2.3) ∇Xξ = −φX + φhX, for all X ∈ χ(M),

where∇ is the Levi-Civita connection of the pseudo-Riemannian manifold. Noticing
that the tensor h vanishes identically if and only if ξ is a Killing vector field and in
such case (φ, ξ, η, g) is said to be a K-paracontact structure. An almost paracontact
manifold is said to be para-Sasakian if and only if the following condition holds [21]

(2.4) (∇Xφ)Y = −g(X,Y )ξ + η(Y )X,

for any X,Y ∈ χ(M). A normal paracontact metric manifold is para-Sasakian and
satisfies

(2.5) R(X,Y )ξ = −(η(Y )X − η(X)Y ),

for any X,Y ∈ χ(M), but unlike contact metric geometry (2.5) is not a sufficient
condition for a paracontact manifold to be para-Sasakian. It is clear that every
para-Sasakian manifold is K-paracontact, but the converse is not always true, as it
is shown in three dimensional case [4].

Finally, we recall the definition of paracontact metric (k, µ)-manifolds [5]:

Definition 2.1. A paracontact metric manifold is said to be a paracontact (k, µ)-
manifold if the curvature tensor R satisfies

(2.6) R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

for all vector fields X,Y ∈ χ(M) and k, µ are real constants.

This class is very wide containing the para-Sasakian manifolds [10, 21] as well
as the paracontact metric manifolds satisfying R(X,Y )ξ = 0 for all X,Y ∈ χ(M)
[22].
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In particular, if µ = 0, then the paracontact metric (k, µ)-manifold is called
paracontact metric N(k)-manifold. Thus for a paracontact metric N(k)-manifold
the curvature tensor satisfies the following relation

(2.7) R(X,Y )ξ = k(η(Y )X − η(X)Y ),

for all X,Y ∈ χ(M). Though the geometric behavior of paracontact metric (k, µ)-
spaces is different according as k < −1, or k > −1, or k = −1, but there are some
common results for k < −1 and k > −1. In [5], Cappelletti-Montano et. al. pointed
out the following result.

Lemma 2.1.([5], p.686, 692) There does not exist any paracontact (k, µ)-manifold
of dimension greater than 3 with k > −1 which is Einstein whereas there exists such
manifolds for k < −1.

In a paracontact metric (k, µ)-manifold (M2n+1, φ, ξ, η, g), n > 1, the following
relations hold [5]:

(2.8) h2 = (k + 1)φ2,

(2.9) (∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), for k 6= −1,

QY =[2(1− n) + nµ]Y + [2(n− 1) + µ]hY

+ [2(n− 1) + n(2k − µ)]η(Y )ξ, for k 6= −1,
(2.10)

(2.11) S(X, ξ) = 2nkη(X),

(2.12) Qξ = 2nkξ,

(∇Xh)Y =− [(1 + k)g(X,φY ) + g(X,φhY )]ξ

+ η(Y )φh(hX −X)− µη(X)φhY, for k 6= −1,
(2.13)

(2.14) Qφ− φQ = 2[2(n− 1) + µ]hφ,

for any vector fields X,Y ∈ χ(M), where Q is the Ricci operator defined by
g(QX,Y ) = S(X,Y ). Making use of (2.3) we have

(2.15) (∇Xη)Y = g(X,φY ) + g(φhX, Y ),

for all vector fields X,Y ∈ χ(M).
According to Takahashi [20] we have the following:
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Definition 2.2. A paracontact metric (k, µ)-manifold is said to be φ-symmetric if
it satisfies

φ2((∇WR)(X,Y )Z) = 0,

for any vector fields W,X, Y and Z ∈ χ(M). In addition, if the vector fields
W,X, Y, Z are horizontal then the manifold is called locally φ-symmetric. It is to
be noted that φ-symmetry implies locally φ-symmetry, but the converse is not true,
in general.

3. Ricci Semisymmetric Paracontact Metric (k, µ)-manifolds

In this section we discuss about Ricci semisymmetric paracontact metric (k, µ)-
manifolds. Suppose the paracontact metric (k, µ)-manifold M be Ricci semisym-
metric. Then

R(X,Y ) · S = 0,

for all X,Y ∈ χ(M). This is equivalent to

(3.1) (R(X,Y ) · S)(U, V ) = 0,

for any U, V,X, Y ∈ χ(M). Thus we have

(3.2) S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0.

Substituting X = U = ξ in (3.2) yields

(3.3) S(R(ξ, Y )ξ, V ) + S(ξ,R(ξ, Y )V ) = 0.

Using (2.11) we infer from (3.3)

(3.4) S(R(ξ, Y )ξ, V ) + 2nkη(R(ξ, Y )V ) = 0.

From (2.6) it follows that

(3.5) R(ξ,X)Y = k(g(X,Y )ξ − η(Y )X) + µ(g(hX, Y )ξ − η(Y )hX).

With the help of (3.4) and (3.5) we get

(3.6) kS(Y, V ) + µS(hY, V )− 2nk2g(Y, V )− 2nkµg(hY, V ) = 0.

Putting Y = hY in (3.6) and using (2.8) we obtain

(3.7) µ(k + 1)S(Y, V ) + kS(hY, V )− 2nk2g(hY, V )− 2nkµ(k + 1)g(Y, V ) = 0.

Now suppose k < −1 and µ 6= 0. Multiplying Equation (3.6) by k and Equation
(3.7) by µ, then subtract the results we get

(3.8) {k2 − µ2(k + 1)}[S(Y, V )− 2nkg(Y, V )] = 0.
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If k < −1, then k2 − µ2(k + 1) 6= 0. Therefore from (3.8) it follows that S(Y, V ) =
2nkg(Y, V ), which implies that the manifold is Einstein.

Also, if we take k < −1 and µ = 0, then (3.6) becomes

(3.9) k[S(Y, V )− 2nkg(Y, V )] = 0.

This implies S(Y, V ) = 2nkg(Y, V ), that is, the manifold is Einstein one.
Conversely, if the manifold is an Einstein manifold, then it can be easily shown

that R · S = 0.
This leads to the following:

Theorem 3.1. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
with k < −1 is Ricci semisymmetric if and only if the manifold is Einstein.

Again Ricci symmetry (∇S = 0) implies Ricci semisymmetric (R · S = 0),
therefore we have the following:

Corollary 3.1. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
with k < −1 is Ricci symmetric if and only if the manifold is Einstein.

Taking covariant derivative of (2.10) along an arbitrary vector field X, we have

(∇XQ)Y =(2(n− 1) + µ)(∇Xh)Y + [2(n− 1)

+ n(2k − µ)][(∇Xη)Y ξ + η(Y )∇Xξ].
(3.10)

Using (2.13) in the above equation gives

(∇XQ)Y =(2(n− 1) + µ)[−{(1 + k)g(X,φY ) + g(X,φhY )}ξ
+ η(Y )φh(hX −X)− µη(X)φhY ] + [2(n− 1) + n(2k − µ)]

[g(X,φY )ξ + g(φhX, Y )ξ + η(Y )(−φX + φhX)].

(3.11)

Thus the condition (∇XQ)Y = 0 holds if and only if k = 1
n −n and µ = −2(n− 1).

Hence we can state the following:

Corollary 3.2. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
is Ricci symmetry (∇S = 0) if and only if k = 1

n − n and µ = −2(n− 1).

Together with Corollary 5.12 of [5] we have the following:

Corollary 3.3. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
with k < −1 is Ricci symmetry (∇S = 0) if and only if the manifold is Einstein.

Since semisymmetry (R · R = 0) implies Ricci semisymmetry (R · S = 0), we
can state the following:

Corollary 3.4. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
with k < −1 is semisymmetric if and only if the manifold is Einstein.

Remark 3.1. If k > −1, then from Lemma 2.1 and Equation (3.8) yields k2 −
µ2(k + 1) = 0.
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4. φ-Ricci Symmetric Paracontact Metric (k, µ)-manifolds

In this section we characterize φ-Ricci symmetric paracontact metric (k, µ)-
manifolds.

Definition 4.1.([7]) A paracontact metric (k, µ)-manifold is said to be φ-Ricci
symmetric if it satisfies

(4.1) φ2((∇XQ)Y ) = 0,

for any vector fields X,Y ∈ χ(M). The manifold is called locally φ-Ricci symmetric
if (4.1) holds for any horizontal vector fields. It follows that φ-Ricci symmetry
implies locally φ-Ricci symmetry, but the converse is not true.

Let M be a (2n + 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold.
From (4.1) we have

(4.2) (∇XQ)Y − η((∇XQ)Y )ξ = 0,

for any vector fields X,Y ∈ χ(M).
Taking inner product of (4.2) with arbitrary vector field Z we obtain

(4.3) g((∇XQ)Y,Z)− η((∇XQ)Y )η(Z) = 0.

This implies

(4.4) g(∇XQY,Z)− S(∇XY,Z)− η((∇XQ)Y )η(Z) = 0.

Substituting Y = ξ in (4.4) gives

(4.5) g(∇XQξ,Z)− S(∇Xξ, Z)− η((∇XQ)ξ)η(Z) = 0.

Taking covariant derivative of (2.10) along arbitrary vector field X, we obtain

(∇XQ)Y =[2(n− 1) + µ](∇Xh)Y + [2(n− 1)

+ n(2k − µ)]{(∇Xη)(Y )ξ + η(Y )∇Xξ}.
(4.6)

Also from (2.13) we get

(4.7) (∇Xh)ξ = φh(hX −X).

Making use of (2.15), (4.7) and (4.6) one can easily obtain

(4.8) η((∇XQ)ξ) = 0.

Taking account of (2.3), (4.8) and (4.5) we have

(4.9) 2nkg(X,φZ) + 2nkg(φhX,Z) + S(φX,Z)− S(φhX,Z) = 0.
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Replacing X by hX in (4.9) and using (2.8) gives that

(4.10) S(φhX,Z)− (k + 1)S(φX,Z)− 2nkg(φhX,Z) + 2nk(k + 1)g(φX,Z) = 0.

Adding (4.9) and (4.10) we obtain

(4.11) k[S(φX,Z)− 2nkg(φX,Z)] = 0.

Since k 6= 0, (4.11) implies

(4.12) S(φX,Z) = 2nkg(φX,Z).

Putting X = φX in (4.12) yields

(4.13) S(X,Z) = 2nkg(X,Z),

which shows that the manifold is an Einstein manifold.
Conversely, suppose S(X,Z) = 2nkg(X,Z), which implies QX = 2nkX. Hence

(∇YQ)X = 0, that is, φ2((∇YQ)X) = 0. Therefore the manifold is φ-Ricci sym-
metric. Thus we can state the following.

Theorem 4.1. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
is φ-Ricci symmetric if and only if the manifold is an Einstein manifold, provided
k 6= 0,−1.

By the above arguments together with µ = 0 we have the following:

Corollary 4.1. A (2n+ 1)-dimensional (n > 1) paracontact metric N(k)-manifold
is φ-Ricci symmetric if and only if the manifold is an Einstein manifold, provided
k 6= 0,−1.

Taking covariant differentiation of (2.10) along an arbitrary vector field X, we
obtain

(∇XQ)Y =(2(n− 1) + µ)(∇Xh)Y + [2(n− 1)

+ n(2k − µ)][(∇Xη)Y ξ + η(Y )∇Xξ].
(4.14)

Using (2.13) in the above equation, we get

(∇XQ)Y =(2(n− 1) + µ)[−{(1 + k)g(X,φY ) + g(X,φhY )}ξ
+ η(Y )φh(hX −X)− µη(X)φhY ] + [2(n− 1) + n(2k − µ)]

[g(X,φY )ξ + g(φhX, Y )ξ + η(Y )(−φX + φhX)].

(4.15)

Applying φ2 on both sides of (4.15) and making use of (2.8) gives

φ2((∇XQ)Y ) = (2(n− 1) + µ)[η(Y ){(k + 1)φX − φhX} − µη(X)φhY ]

+[2(n− 1) + n(2k − µ)][η(Y )(−φX + φhX)].(4.16)
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This is equivalent to

φ2((∇XQ)Y ) = {µk + µ− 2k + nµ}η(Y )φX + {2nk − nµ− µ}η(Y )φhX

−µ{2(n− 1) + µ}η(X)φhY.(4.17)

From the foregoing equation we see that φ2((∇XQ)Y ) = 0 if and only if k = 1
n − n

and µ = −2(n− 1). This leads to the following:

Theorem 4.2. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
is φ-Ricci symmetric if and only if k = 1

n − n and µ = −2(n− 1).

Hence from the Corollary 5.12 of [5] we conclude the following:

Corollary 4.2. A (2n+ 1)-dimensional (n > 1) paracontact metric (k, µ)-manifold
with k < −1 is φ-Ricci symmetric if and only if the manifold is Einstein.

5. Second Order Parallel Tensor

Definition 5.1.([11]) A tensor α of second order is said to be parallel if ∇α = 0,
where ∇ denotes the covariant differentiation with respect to the associated metric
tensor.

Let α be a symmetric (0, 2)-tensor field on a paracontact metric (k, µ)-manifold
M such that ∇α = 0. Then it follows that

(5.1) α(R(X,Y )Z,W ) + α(Z,R(X,Y )W ) = 0,

for any vector fields X,Y, Z,W ∈ χ(M).
Substituting X = Z = W = ξ in (5.1) and noticing α is symmetric implies

(5.2) α(R(ξ, Y )ξ, ξ) = 0.

Now we consider a non-empty connected open subset U of M and restrict our
discussions to this set. Applying (2.6) in (5.2) yields

(5.3) k{g(Y, ξ)α(ξ, ξ)− α(Y, ξ)} − µα(hY, ξ) = 0.

We now consider the following cases:
Case 1. k < −1, µ = 0,
Case 2. k < −1, µ 6= 0.

For the Case 1, we have from (5.3)

(5.4) g(Y, ξ)α(ξ, ξ)− α(Y, ξ) = 0.

Taking covariant differentiation of (5.4) along X, we obtain

α(∇XY, ξ) + α(Y,∇Xξ) =g(∇XY, ξ)α(ξ, ξ) + g(Y,∇Xξ)α(ξ, ξ)

+ 2g(Y, ξ)α(∇Xξ, ξ).
(5.5)
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Replacing Y by ∇XY in (5.4), we get

(5.6) g(∇XY, ξ)α(ξ, ξ)− α(∇XY, ξ) = 0.

Using (5.5) and (5.6) we have

(5.7) α(Y,∇Xξ) = g(Y,∇Xξ)α(ξ, ξ) + 2g(Y, ξ)α(∇Xξ, ξ).

Making use of (2.3) and (5.4) in (5.7) follows that

(5.8) α(Y,−φX) + α(Y, φhX) = g(Y,−φX)α(ξ, ξ) + g(Y, φhX)α(ξ, ξ).

Changing X by φX in (5.8) and using (2.2) we have

(5.9) α(Y,X) + α(Y, hX) = g(X,Y )α(ξ, ξ) + g(Y, hX)α(ξ, ξ).

Putting X = hX in (5.9) and making use of (2.8) we obtain

(5.10) α(Y, hX) + (k + 1)α(Y,X) = g(hX, Y )α(ξ, ξ) + (k + 1)g(X,Y )α(ξ, ξ).

Subtracting (5.9) from (5.10) and since k 6= 0 it follows that

(5.11) α(X,Y ) = α(ξ, ξ)g(X,Y ).

Since α and g are parallel tensor fields, α(ξ, ξ) must be constant on U. Since U is
an arbitrary open set of M , it follows that (5.11) holds on whole of M .

For Case 2, replacing Y by hY in (5.3) and using (2.8) we have

(5.12) kα(hY, ξ) + µ(k + 1){α(Y, ξ)− g(Y, ξ)α(ξ, ξ)} = 0.

Multiplying Equation (5.3) by k and Equation (5.12) by µ (since k < −1 and µ 6= 0),
then adding the results we get

(5.13) {k2 − µ2(k + 1)}[α(Y, ξ)− g(Y, ξ)α(ξ, ξ)] = 0.

Since k < −1, we see that k2 − µ2(k + 1) 6= 0. Hence, it follows from (5.13) that
the relation (5.4) holds and then proceeding in the same way as in Case 1, we can
show that α(X,Y ) = α(ξ, ξ)g(X,Y ) for all X,Y ∈ χ(M).

Considering the above facts we can state the following:

Theorem 5.1. Let M be a (2n+1)-dimensional (n > 1) paracontact metric (k, µ)-
manifold with k < −1. If M admits a second order symmetric parallel tensor then
it is a constant multiple of the associated metric tensor.

Application: Let us consider a paracontact metric (k, µ)-manifold which is Ricci
symmetric, that is, ∇S = 0. Since the Ricci tensor is symmetric (0, 2)-tensor, thus
applying Theorem 5.1, we have the following:
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Corollary 5.1. A (2n + 1)-dimensional (n > 1) Ricci symmetric (∇S = 0) para-
contact metric (k, µ)-manifold with k < −1 is an Einstein manifold.
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