Paracontact Metric (k, μ)-spaces Satisfying Certain Curvature Conditions

Krishanu Mandal* and Uday Chand De
Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700 019, India
e-mail : krishanu.mandal013@gmail.com and uc_de@yahoo.com

Abstract. The object of this paper is to classify paracontact metric (k, μ)-spaces satisfying certain curvature conditions. We show that a paracontact metric (k, μ)-space is Ricci semisymmetric if and only if the metric is Einstein, provided $k<-1$. Also we prove that a paracontact metric (k, μ)-space is ϕ-Ricci symmetric if and only if the metric is Einstein, provided $k \neq 0,-1$. Moreover, we show that in a paracontact metric (k, μ)-space with $k<-1$, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Several consequences of these results are discussed.

1. Introduction

After being introduced by Kaneyuki and Williams [10] in 1985, a systematic study of paracontact metric manifolds and their subclasses, especially para-Sasakian manifolds, was carried out by Zamkovoy [21]. Paracontact metric manifolds have been studied by several authors such as Alekseevski et. al. [1, 2], Cortés [6], Erdem [9], Martin-Molina [12]. Recently, Cappelletti-Montano et. al. [5] introduced a new type of paracontact geometry, so-called paracontact metric (k, μ)-spaces, where k and μ are real constants. It is well known [3] that in the contact case one requires $k \leq 1$, but there is no such restriction for k in the paracontact case [5]. Also, in the contact case, $k=1$ implies the manifold is Sasakian but in paracontact case, $k=-1$ does not imply the manifold is para-Sasakian.

Among the geometric properties of manifolds symmetry is an important one. From the local point of view it was introduced by Shirokov [18] as a Riemannian manifold with covariant constant curvature tensor R, that is, with $\nabla R=0$, where

[^0]∇ is the Levi-Civita connection. An extensive theory of symmetric Riemannian manifolds was carried out by Cartan in 1927. A manifold is called semisymmetric if the curvature tensor R satisfies $R(X, Y) \cdot R=0$, where $R(X, Y)$ is considered to be a derivation of the tensor algebra at each point of the manifold for the tangent vectors X, Y. Semisymmetric manifolds were locally classified by Szabó [19].
A manifold is said to be Ricci semisymmetric if $R(X, Y) \cdot S=0$ where S denotes the Ricci tensor of type $(0,2)$. A general classification of these manifolds has been worked out by Mirzoyan [13].

The notion of locally ϕ-symmetric was introduced by Takahashi [20] in Sasakian geometry as a weaker version of locally symmetric manifolds. In [7], De and Sarkar studied ϕ-Ricci symmetric Sasakian manifolds. Prakasha and Mirji [15] studied ϕ-Ricci symmetric $N(k)$-paracontact metric manifolds.

Also one of the main purposes of this paper is to study Eisenhart problem. In 1923, Eisenhart [8] proved that if a positive definite Riemannian manifold admits a second order parallel symmetric covariant tensor other than a constant multiple of the associated metric tensor, then it is reducible. In 1925, Levy [11] proved that a second order symmetric parallel non-singular tensor on a space of constant curvature is a constant multiple of the associated metric tensor. Sharma $[16,17]$ extended the result in contact geometry. Recently, Mondal et. al. [14] studied second order parallel tensors on (k, μ)-contact metric manifolds. Here we consider second order parallel symmetric covariant tensors on paracontact metric (k, μ)-spaces.

A paracontact metric (k, μ)-manifold is said to be an Einstein manifold if the Ricci tensor satisfies $S=\lambda g$, where λ is some constant.

The paper is organized as follows:
In Section 2, we provide some basic results of paracontact metric (k, μ)-manifolds. Sections 3 and 4 are devoted to study Ricci semisymmetric and ϕ-Ricci symmetric paracontact metric (k, μ)-manifolds, respectively. In Section 5, we study the existence of symmetric parallel covariant tensors on paracontact metric (k, μ)-spaces. Several consequences of these results are discussed.

2. Preliminaries

A smooth manifold $M^{2 n+1}$ is said to admit an almost paracontact structure (ϕ, ξ, η) if it admits a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η satisfying [10]
(i) $\phi^{2} X=X-\eta(X) \xi$, for any vector field $X \in \chi(M)$, the set of all differential vector fields on M,
(ii) $\phi(\xi)=0, \eta \circ \phi=0, \eta(\xi)=1$,
(iii) the tensor field ϕ induces an almost paracomplex structure on each fibre of $\mathcal{D}=\operatorname{ker}(\eta)$, that is, the eigendistributions \mathcal{D}_{ϕ}^{+}and \mathcal{D}_{ϕ}^{-}of ϕ corresponding to the eigenvalues 1 and -1 , respectively, have same dimension n.

An almost paracontact structure is said to be normal [21] if and only if
the (1,2)-type torsion tensor $N_{\phi}=[\phi, \phi]-2 d \eta \otimes \xi$ vanishes identically, where $[\phi, \phi](X, Y)=\phi^{2}[X, Y]+[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y]$. An almost paracontact manifold equipped with a pseudo-Riemannian metric g such that

$$
\begin{equation*}
g(\phi X, \phi Y)=-g(X, Y)+\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for all $X, Y \in \chi(M)$, is called almost paracontact metric manifold, where signature of g is $(n+1, n)$. An almost paracontact structure is said to be a paracontact structure if $g(X, \phi Y)=d \eta(X, Y)$ with the associated metric g [21]. For any almost paracontact metric manifold ($M^{2 n+1}, \phi, \xi, \eta, g$) admits (at least, locally) a ϕ-basis [21], that is, a pseudo-orthonormal basis of vector fields of the form $\left\{\xi, E_{1}, E_{2}, \ldots, E_{n}, \phi E_{1}, \phi E_{2}, \ldots, \phi E_{n}\right\}$, where $\xi, E_{1}, E_{2}, \ldots, E_{n}$ are space-like vector fields and then, by (2.1) the vector fields $\phi E_{1}, \phi E_{2}, \ldots, \phi E_{n}$ are time-like. In a paracontact metric manifold we define a symmetric, trace-free (1,1)-tensor $h=\frac{1}{2} £_{\xi} \phi$ satisfying [21]

$$
\begin{gather*}
\phi h+h \phi=0, h \xi=0 \tag{2.2}\\
\nabla_{X} \xi=-\phi X+\phi h X, \text { for all } X \in \chi(M) \tag{2.3}
\end{gather*}
$$

where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold. Noticing that the tensor h vanishes identically if and only if ξ is a Killing vector field and in such case (ϕ, ξ, η, g) is said to be a K-paracontact structure. An almost paracontact manifold is said to be para-Sasakian if and only if the following condition holds [21]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.4}
\end{equation*}
$$

for any $X, Y \in \chi(M)$. A normal paracontact metric manifold is para-Sasakian and satisfies

$$
\begin{equation*}
R(X, Y) \xi=-(\eta(Y) X-\eta(X) Y) \tag{2.5}
\end{equation*}
$$

for any $X, Y \in \chi(M)$, but unlike contact metric geometry (2.5) is not a sufficient condition for a paracontact manifold to be para-Sasakian. It is clear that every para-Sasakian manifold is K-paracontact, but the converse is not always true, as it is shown in three dimensional case [4].

Finally, we recall the definition of paracontact metric (k, μ)-manifolds [5]:
Definition 2.1. A paracontact metric manifold is said to be a paracontact (k, μ) manifold if the curvature tensor R satisfies

$$
\begin{equation*}
R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y)+\mu(\eta(Y) h X-\eta(X) h Y) \tag{2.6}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M)$ and k, μ are real constants.
This class is very wide containing the para-Sasakian manifolds [10, 21] as well as the paracontact metric manifolds satisfying $R(X, Y) \xi=0$ for all $X, Y \in \chi(M)$ [22].

In particular, if $\mu=0$, then the paracontact metric (k, μ)-manifold is called paracontact metric $N(k)$-manifold. Thus for a paracontact metric $N(k)$-manifold the curvature tensor satisfies the following relation

$$
\begin{equation*}
R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y) \tag{2.7}
\end{equation*}
$$

for all $X, Y \in \chi(M)$. Though the geometric behavior of paracontact metric (k, μ) spaces is different according as $k<-1$, or $k>-1$, or $k=-1$, but there are some common results for $k<-1$ and $k>-1$. In [5], Cappelletti-Montano et. al. pointed out the following result.

Lemma 2.1. ([5], p.686, 692) There does not exist any paracontact (k, μ)-manifold of dimension greater than 3 with $k>-1$ which is Einstein whereas there exists such manifolds for $k<-1$.

In a paracontact metric (k, μ)-manifold $\left(M^{2 n+1}, \phi, \xi, \eta, g\right), n>1$, the following relations hold [5]:

$$
\begin{gather*}
h^{2}=(k+1) \phi^{2} \tag{2.8}\\
\left(\nabla_{X} \phi\right) Y=-g(X-h X, Y) \xi+\eta(Y)(X-h X), \quad \text { for } k \neq-1, \tag{2.9}\\
Q Y=[2(1-n)+n \mu] Y+[2(n-1)+\mu] h Y \tag{2.10}\\
+[2(n-1)+n(2 k-\mu)] \eta(Y) \xi, \quad \text { for } k \neq-1, \\
S(X, \xi)=2 n k \eta(X), \tag{2.11}\\
 \tag{2.12}\\
Q Q=2 n k \xi, \tag{2.13}\\
\left(\nabla_{X} h\right) Y=-[(1+k) g(X, \phi Y)+g(X, \phi h Y)] \xi \\
+\eta(Y) \phi h(h X-X)-\mu \eta(X) \phi h Y, \quad \text { for } k \neq-1, \tag{2.14}\\
\end{gather*}
$$

for any vector fields $X, Y \in \chi(M)$, where Q is the Ricci operator defined by $g(Q X, Y)=S(X, Y)$. Making use of (2.3) we have

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=g(X, \phi Y)+g(\phi h X, Y) \tag{2.15}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M)$.
According to Takahashi [20] we have the following:

Definition 2.2. A paracontact metric (k, μ)-manifold is said to be ϕ-symmetric if it satisfies

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0
$$

for any vector fields W, X, Y and $Z \in \chi(M)$. In addition, if the vector fields W, X, Y, Z are horizontal then the manifold is called locally ϕ-symmetric. It is to be noted that ϕ-symmetry implies locally ϕ-symmetry, but the converse is not true, in general.

3. Ricci Semisymmetric Paracontact Metric (k, μ)-manifolds

In this section we discuss about Ricci semisymmetric paracontact metric (k, μ) manifolds. Suppose the paracontact metric (k, μ)-manifold M be Ricci semisymmetric. Then

$$
R(X, Y) \cdot S=0
$$

for all $X, Y \in \chi(M)$. This is equivalent to

$$
\begin{equation*}
(R(X, Y) \cdot S)(U, V)=0 \tag{3.1}
\end{equation*}
$$

for any $U, V, X, Y \in \chi(M)$. Thus we have

$$
\begin{equation*}
S(R(X, Y) U, V)+S(U, R(X, Y) V)=0 \tag{3.2}
\end{equation*}
$$

Substituting $X=U=\xi$ in (3.2) yields

$$
\begin{equation*}
S(R(\xi, Y) \xi, V)+S(\xi, R(\xi, Y) V)=0 \tag{3.3}
\end{equation*}
$$

Using (2.11) we infer from (3.3)

$$
\begin{equation*}
S(R(\xi, Y) \xi, V)+2 n k \eta(R(\xi, Y) V)=0 \tag{3.4}
\end{equation*}
$$

From (2.6) it follows that

$$
\begin{equation*}
R(\xi, X) Y=k(g(X, Y) \xi-\eta(Y) X)+\mu(g(h X, Y) \xi-\eta(Y) h X) \tag{3.5}
\end{equation*}
$$

With the help of (3.4) and (3.5) we get

$$
\begin{equation*}
k S(Y, V)+\mu S(h Y, V)-2 n k^{2} g(Y, V)-2 n k \mu g(h Y, V)=0 \tag{3.6}
\end{equation*}
$$

Putting $Y=h Y$ in (3.6) and using (2.8) we obtain

$$
\begin{equation*}
\mu(k+1) S(Y, V)+k S(h Y, V)-2 n k^{2} g(h Y, V)-2 n k \mu(k+1) g(Y, V)=0 \tag{3.7}
\end{equation*}
$$

Now suppose $k<-1$ and $\mu \neq 0$. Multiplying Equation (3.6) by k and Equation (3.7) by μ, then subtract the results we get

$$
\begin{equation*}
\left\{k^{2}-\mu^{2}(k+1)\right\}[S(Y, V)-2 n k g(Y, V)]=0 \tag{3.8}
\end{equation*}
$$

If $k<-1$, then $k^{2}-\mu^{2}(k+1) \neq 0$. Therefore from (3.8) it follows that $S(Y, V)=$ $2 n k g(Y, V)$, which implies that the manifold is Einstein.

Also, if we take $k<-1$ and $\mu=0$, then (3.6) becomes

$$
\begin{equation*}
k[S(Y, V)-2 n k g(Y, V)]=0 \tag{3.9}
\end{equation*}
$$

This implies $S(Y, V)=2 n k g(Y, V)$, that is, the manifold is Einstein one.
Conversely, if the manifold is an Einstein manifold, then it can be easily shown that $R \cdot S=0$.

This leads to the following:
Theorem 3.1. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold with $k<-1$ is Ricci semisymmetric if and only if the manifold is Einstein.

Again Ricci symmetry $(\nabla S=0)$ implies Ricci semisymmetric $(R \cdot S=0)$, therefore we have the following:

Corollary 3.1. A $(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold with $k<-1$ is Ricci symmetric if and only if the manifold is Einstein.

Taking covariant derivative of (2.10) along an arbitrary vector field X, we have

$$
\begin{align*}
\left(\nabla_{X} Q\right) Y= & (2(n-1)+\mu)\left(\nabla_{X} h\right) Y+[2(n-1) \tag{3.10}\\
& +n(2 k-\mu)]\left[\left(\nabla_{X} \eta\right) Y \xi+\eta(Y) \nabla_{X} \xi\right]
\end{align*}
$$

Using (2.13) in the above equation gives

$$
\begin{align*}
\left(\nabla_{X} Q\right) Y= & (2(n-1)+\mu)[-\{(1+k) g(X, \phi Y)+g(X, \phi h Y)\} \xi \\
& +\eta(Y) \phi h(h X-X)-\mu \eta(X) \phi h Y]+[2(n-1)+n(2 k-\mu)] \tag{3.11}\\
& {[g(X, \phi Y) \xi+g(\phi h X, Y) \xi+\eta(Y)(-\phi X+\phi h X)] }
\end{align*}
$$

Thus the condition $\left(\nabla_{X} Q\right) Y=0$ holds if and only if $k=\frac{1}{n}-n$ and $\mu=-2(n-1)$. Hence we can state the following:

Corollary 3.2. A $(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold is Ricci symmetry $(\nabla S=0)$ if and only if $k=\frac{1}{n}-n$ and $\mu=-2(n-1)$.

Together with Corollary 5.12 of [5] we have the following:
Corollary 3.3. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold with $k<-1$ is Ricci symmetry $(\nabla S=0)$ if and only if the manifold is Einstein.

Since semisymmetry ($R \cdot R=0$) implies Ricci semisymmetry ($R \cdot S=0$), we can state the following:

Corollary 3.4. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold with $k<-1$ is semisymmetric if and only if the manifold is Einstein.
Remark 3.1. If $k>-1$, then from Lemma 2.1 and Equation (3.8) yields $k^{2}-$ $\mu^{2}(k+1)=0$.

4. ϕ-Ricci Symmetric Paracontact Metric (k, μ)-manifolds

In this section we characterize ϕ-Ricci symmetric paracontact metric (k, μ) manifolds.

Definition 4.1.([7]) A paracontact metric (k, μ)-manifold is said to be ϕ-Ricci symmetric if it satisfies

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{X} Q\right) Y\right)=0 \tag{4.1}
\end{equation*}
$$

for any vector fields $X, Y \in \chi(M)$. The manifold is called locally ϕ-Ricci symmetric if (4.1) holds for any horizontal vector fields. It follows that ϕ-Ricci symmetry implies locally ϕ-Ricci symmetry, but the converse is not true.

Let M be a $(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold. From (4.1) we have

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y-\eta\left(\left(\nabla_{X} Q\right) Y\right) \xi=0 \tag{4.2}
\end{equation*}
$$

for any vector fields $X, Y \in \chi(M)$.
Taking inner product of (4.2) with arbitrary vector field Z we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} Q\right) Y, Z\right)-\eta\left(\left(\nabla_{X} Q\right) Y\right) \eta(Z)=0 \tag{4.3}
\end{equation*}
$$

This implies

$$
\begin{equation*}
g\left(\nabla_{X} Q Y, Z\right)-S\left(\nabla_{X} Y, Z\right)-\eta\left(\left(\nabla_{X} Q\right) Y\right) \eta(Z)=0 \tag{4.4}
\end{equation*}
$$

Substituting $Y=\xi$ in (4.4) gives

$$
\begin{equation*}
g\left(\nabla_{X} Q \xi, Z\right)-S\left(\nabla_{X} \xi, Z\right)-\eta\left(\left(\nabla_{X} Q\right) \xi\right) \eta(Z)=0 \tag{4.5}
\end{equation*}
$$

Taking covariant derivative of (2.10) along arbitrary vector field X, we obtain

$$
\begin{align*}
\left(\nabla_{X} Q\right) Y= & {[2(n-1)+\mu]\left(\nabla_{X} h\right) Y+[2(n-1)} \\
& +n(2 k-\mu)]\left\{\left(\nabla_{X} \eta\right)(Y) \xi+\eta(Y) \nabla_{X} \xi\right\} \tag{4.6}
\end{align*}
$$

Also from (2.13) we get

$$
\begin{equation*}
\left(\nabla_{X} h\right) \xi=\phi h(h X-X) \tag{4.7}
\end{equation*}
$$

Making use of (2.15), (4.7) and (4.6) one can easily obtain

$$
\begin{equation*}
\eta\left(\left(\nabla_{X} Q\right) \xi\right)=0 \tag{4.8}
\end{equation*}
$$

Taking account of (2.3), (4.8) and (4.5) we have

$$
\begin{equation*}
2 n k g(X, \phi Z)+2 n k g(\phi h X, Z)+S(\phi X, Z)-S(\phi h X, Z)=0 \tag{4.9}
\end{equation*}
$$

Replacing X by $h X$ in (4.9) and using (2.8) gives that
(4.10) $S(\phi h X, Z)-(k+1) S(\phi X, Z)-2 n k g(\phi h X, Z)+2 n k(k+1) g(\phi X, Z)=0$.

Adding (4.9) and (4.10) we obtain

$$
\begin{equation*}
k[S(\phi X, Z)-2 n k g(\phi X, Z)]=0 . \tag{4.11}
\end{equation*}
$$

Since $k \neq 0$, (4.11) implies

$$
\begin{equation*}
S(\phi X, Z)=2 n k g(\phi X, Z) . \tag{4.12}
\end{equation*}
$$

Putting $X=\phi X$ in (4.12) yields

$$
\begin{equation*}
S(X, Z)=2 n k g(X, Z), \tag{4.13}
\end{equation*}
$$

which shows that the manifold is an Einstein manifold.
Conversely, suppose $S(X, Z)=2 n k g(X, Z)$, which implies $Q X=2 n k X$. Hence $\left(\nabla_{Y} Q\right) X=0$, that is, $\phi^{2}\left(\left(\nabla_{Y} Q\right) X\right)=0$. Therefore the manifold is ϕ-Ricci symmetric. Thus we can state the following.

Theorem 4.1. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold is ϕ-Ricci symmetric if and only if the manifold is an Einstein manifold, provided $k \neq 0,-1$.

By the above arguments together with $\mu=0$ we have the following:
Corollary 4.1. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric $N(k)$-manifold is ϕ-Ricci symmetric if and only if the manifold is an Einstein manifold, provided $k \neq 0,-1$.

Taking covariant differentiation of (2.10) along an arbitrary vector field X, we obtain

$$
\begin{align*}
\left(\nabla_{X} Q\right) Y= & (2(n-1)+\mu)\left(\nabla_{X} h\right) Y+[2(n-1) \\
& +n(2 k-\mu)]\left[\left(\nabla_{X} \eta\right) Y \xi+\eta(Y) \nabla_{X} \xi\right] . \tag{4.14}
\end{align*}
$$

Using (2.13) in the above equation, we get

$$
\begin{align*}
\left(\nabla_{X} Q\right) Y= & (2(n-1)+\mu)[-\{(1+k) g(X, \phi Y)+g(X, \phi h Y)\} \xi \\
15) & +\eta(Y) \phi h(h X-X)-\mu \eta(X) \phi h Y]+[2(n-1)+n(2 k-\mu)] \tag{4.15}\\
& {[g(X, \phi Y) \xi+g(\phi h X, Y) \xi+\eta(Y)(-\phi X+\phi h X)] . }
\end{align*}
$$

Applying ϕ^{2} on both sides of (4.15) and making use of (2.8) gives

$$
\begin{align*}
\phi^{2}\left(\left(\nabla_{X} Q\right) Y\right)= & (2(n-1)+\mu)[\eta(Y)\{(k+1) \phi X-\phi h X\}-\mu \eta(X) \phi h Y] \\
& +[2(n-1)+n(2 k-\mu)][\eta(Y)(-\phi X+\phi h X)] . \tag{4.16}
\end{align*}
$$

This is equivalent to

$$
\begin{align*}
\phi^{2}\left(\left(\nabla_{X} Q\right) Y\right)= & \{\mu k+\mu-2 k+n \mu\} \eta(Y) \phi X+\{2 n k-n \mu-\mu\} \eta(Y) \phi h X \\
& -\mu\{2(n-1)+\mu\} \eta(X) \phi h Y . \tag{4.17}
\end{align*}
$$

From the foregoing equation we see that $\phi^{2}\left(\left(\nabla_{X} Q\right) Y\right)=0$ if and only if $k=\frac{1}{n}-n$ and $\mu=-2(n-1)$. This leads to the following:
Theorem 4.2. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold is ϕ-Ricci symmetric if and only if $k=\frac{1}{n}-n$ and $\mu=-2(n-1)$.

Hence from the Corollary 5.12 of [5] we conclude the following:
Corollary 4.2. $A(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ)-manifold with $k<-1$ is ϕ-Ricci symmetric if and only if the manifold is Einstein.

5. Second Order Parallel Tensor

Definition 5.1.([11]) A tensor α of second order is said to be parallel if $\nabla \alpha=0$, where ∇ denotes the covariant differentiation with respect to the associated metric tensor.

Let α be a symmetric (0,2)-tensor field on a paracontact metric (k, μ)-manifold M such that $\nabla \alpha=0$. Then it follows that

$$
\begin{equation*}
\alpha(R(X, Y) Z, W)+\alpha(Z, R(X, Y) W)=0 \tag{5.1}
\end{equation*}
$$

for any vector fields $X, Y, Z, W \in \chi(M)$.
Substituting $X=Z=W=\xi$ in (5.1) and noticing α is symmetric implies

$$
\begin{equation*}
\alpha(R(\xi, Y) \xi, \xi)=0 \tag{5.2}
\end{equation*}
$$

Now we consider a non-empty connected open subset \mathcal{U} of M and restrict our discussions to this set. Applying (2.6) in (5.2) yields

$$
\begin{equation*}
k\{g(Y, \xi) \alpha(\xi, \xi)-\alpha(Y, \xi)\}-\mu \alpha(h Y, \xi)=0 \tag{5.3}
\end{equation*}
$$

We now consider the following cases:
Case 1. $k<-1, \mu=0$,
Case 2. $k<-1, \mu \neq 0$.
For the Case 1, we have from (5.3)

$$
\begin{equation*}
g(Y, \xi) \alpha(\xi, \xi)-\alpha(Y, \xi)=0 \tag{5.4}
\end{equation*}
$$

Taking covariant differentiation of (5.4) along X, we obtain

$$
\begin{align*}
\alpha\left(\nabla_{X} Y, \xi\right)+\alpha\left(Y, \nabla_{X} \xi\right)= & g\left(\nabla_{X} Y, \xi\right) \alpha(\xi, \xi)+g\left(Y, \nabla_{X} \xi\right) \alpha(\xi, \xi) \\
& +2 g(Y, \xi) \alpha\left(\nabla_{X} \xi, \xi\right) \tag{5.5}
\end{align*}
$$

Replacing Y by $\nabla_{X} Y$ in (5.4), we get

$$
\begin{equation*}
g\left(\nabla_{X} Y, \xi\right) \alpha(\xi, \xi)-\alpha\left(\nabla_{X} Y, \xi\right)=0 . \tag{5.6}
\end{equation*}
$$

Using (5.5) and (5.6) we have

$$
\begin{equation*}
\alpha\left(Y, \nabla_{X} \xi\right)=g\left(Y, \nabla_{X} \xi\right) \alpha(\xi, \xi)+2 g(Y, \xi) \alpha\left(\nabla_{X} \xi, \xi\right) \tag{5.7}
\end{equation*}
$$

Making use of (2.3) and (5.4) in (5.7) follows that

$$
\begin{equation*}
\alpha(Y,-\phi X)+\alpha(Y, \phi h X)=g(Y,-\phi X) \alpha(\xi, \xi)+g(Y, \phi h X) \alpha(\xi, \xi) . \tag{5.8}
\end{equation*}
$$

Changing X by ϕX in (5.8) and using (2.2) we have

$$
\begin{equation*}
\alpha(Y, X)+\alpha(Y, h X)=g(X, Y) \alpha(\xi, \xi)+g(Y, h X) \alpha(\xi, \xi) . \tag{5.9}
\end{equation*}
$$

Putting $X=h X$ in (5.9) and making use of (2.8) we obtain

$$
\begin{equation*}
\alpha(Y, h X)+(k+1) \alpha(Y, X)=g(h X, Y) \alpha(\xi, \xi)+(k+1) g(X, Y) \alpha(\xi, \xi) . \tag{5.10}
\end{equation*}
$$

Subtracting (5.9) from (5.10) and since $k \neq 0$ it follows that

$$
\begin{equation*}
\alpha(X, Y)=\alpha(\xi, \xi) g(X, Y) . \tag{5.11}
\end{equation*}
$$

Since α and g are parallel tensor fields, $\alpha(\xi, \xi)$ must be constant on \mathcal{U}. Since \mathcal{U} is an arbitrary open set of M, it follows that (5.11) holds on whole of M.

For Case 2, replacing Y by $h Y$ in (5.3) and using (2.8) we have

$$
\begin{equation*}
k \alpha(h Y, \xi)+\mu(k+1)\{\alpha(Y, \xi)-g(Y, \xi) \alpha(\xi, \xi)\}=0 . \tag{5.12}
\end{equation*}
$$

Multiplying Equation (5.3) by k and Equation (5.12) by μ (since $k<-1$ and $\mu \neq 0$), then adding the results we get

$$
\begin{equation*}
\left\{k^{2}-\mu^{2}(k+1)\right\}[\alpha(Y, \xi)-g(Y, \xi) \alpha(\xi, \xi)]=0 . \tag{5.13}
\end{equation*}
$$

Since $k<-1$, we see that $k^{2}-\mu^{2}(k+1) \neq 0$. Hence, it follows from (5.13) that the relation (5.4) holds and then proceeding in the same way as in Case 1, we can show that $\alpha(X, Y)=\alpha(\xi, \xi) g(X, Y)$ for all $X, Y \in \chi(M)$.

Considering the above facts we can state the following:
Theorem 5.1. Let M be a $(2 n+1)$-dimensional $(n>1)$ paracontact metric (k, μ) manifold with $k<-1$. If M admits a second order symmetric parallel tensor then it is a constant multiple of the associated metric tensor.

Application: Let us consider a paracontact metric (k, μ)-manifold which is Ricci symmetric, that is, $\nabla S=0$. Since the Ricci tensor is symmetric (0,2)-tensor, thus applying Theorem 5.1, we have the following:

Corollary 5.1. A $(2 n+1)$-dimensional $(n>1)$ Ricci symmetric $(\nabla S=0)$ paracontact metric (k, μ)-manifold with $k<-1$ is an Einstein manifold.

Acknowledgements. The authors are grateful to the Editor-in-Chief for careful reading of the paper and valuable suggestions and comments towards the improvement of the paper.

References

[1] D. V. Alekseevski, V. Cortés, A. S. Galaev and T. Leistner, Cones over pseudoRiemannian manifolds and their holonomy, J. Reine Angew. Math., 635(2009), 2369.
[2] D. V. Alekseevski, C. Medori and A. Tomassini, Maximally homogeneous para-CR manifolds, Ann. Global Anal. Geom., 30(2006), 1-27.
[3] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1995), 189-214.
[4] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55(2011), 697-718.
[5] B. Cappelletti-Montano, I. Küpeli Erken and C. Murathan, Nullity conditions in paracontact geometry, Differential Geom. Appl., 30(2012), 665-693.
[6] V. Cortés, M. A. Lawn and L. Schäfer, Affine hyperspheres associated to special paraKähler manifolds, Int. J. Geom. Methods Mod. Phys., 3(2006), 995-1009.
[7] U. C. De and A. Sarkar, On ϕ-Ricci symmetric Sasakian manifolds, Proc. Jangjeon Math. Soc., 11(2008), 47-52.
[8] L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc., 25(1923), 297-306.
[9] S. Erdem, On almost (para) contact (hyperbolic) metric manifolds and harmonicity of $\left(\phi, \phi^{\prime}\right)$-holomorphic maps between them, Huston J. Math., 28(2002), 21-45.
[10] S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99(1985), 173-187.
[11] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math., 27(1925), 91-98.
[12] V. Martin-Molina, Local classification and examples of an important class of paracontact metric manifolds, Filomat, 29(2015), 507-515.
[13] V. A. Mirzoyan, Structure theorems on Riemannian Ricci semisymmetic spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 6(1992), 80-89.
[14] A. K. Mondal, U. C. De and C. Özgür, Second order parallel tensors on (k, μ)-contact metric manifolds, An. St. Univ. Ovidius Const. Ser. Mat., 18(2010), 229-238.
[15] D. G. Prakasha and K. K. Mirji, On ϕ-symmetric $N(k)$-paracontact metric manifolds, J. Math., (2015), Art. ID 728298, 6 pp.
[16] R. Sharma, Second order parallel tensors on contact manifolds, Algebras Groups Geom., 7(1990), 145-152.
[17] R. Sharma, Second order parallel tensors on contact manifolds II, C.R. Math. Rep. Acad. Sci. Canada, 13(1991), 259-264.
[18] P. A. Shirokov, Constant vector fields and tensor fields of second order in Riemannian spaces, Izv. kazan Fiz. Mat. Obshchestva Ser., 25(1925), 86-114.
[19] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, the local version, J. Differential Geom., 17(1982), 531-582.
[20] T. Takahashi, Sasakian ϕ-symmetic spaces, Tohoku Math. J., 29(1977), 91-113.
[21] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(2009), 37-60.
[22] S. Zamkovoy and V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform., 100(2011), 27-34.

[^0]: * Corresponding Author.

 Received November 7, 2016; revised June 8, 2018; accepted June 8, 2018.
 2010 Mathematics Subject Classification: primary 53B30, 53C15, 53C25, 53C50; secondary 53D10, 53D15.
 Key words and phrases: paracontact metric (k, μ)-spaces, Ricci semisymmetric, ϕ-Ricci symmetry, second order parallel tensor, Einstein manifold.

