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Abstract. Since the Mittag-Leffler function was introduced in 1903, a variety of exten-

sions and generalizations with diverse applications have been presented and investigated.

In this paper, we aim to introduce some presumably new and remarkably different ex-

tensions of the Mittag-Leffler function, and use these to present the pathway fractional

integral formulas. We point out relevant connections of some particular cases of our main

results with known results.
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1. Introduction and Preliminaries

The Swedish mathematician Gosta Mittag-Leffler [19] introduced the so-called
Mittag-Leffler function

(1.1) Eα(z) =
∞∑

n=0

zn

Γ(αn+ 1)
(z ∈ C; ℜ(α) > 0),

where Γ is the familiar gamma function whose Euler’s integral is given by (see, e.g.,
[34, Section 1.1])

(1.2) Γ(z) =

∞∫
0

tz−1e−t dt (ℜ(z) > 0).

Here and in the following, let C, R, R+, Z−
0 , and N be the sets of complex

numbers, real numbers, positive real numbers, non-positive integers, and positive
integers, respectively, and let R+

0 := R+ ∪ {0}. Wiman [39] generalized the Mittag-
Leffler function (1.1) as follows:

(1.3) Eα,β(z) =
∞∑

n=0

zn

Γ(αn+ β)
(z ∈ C; min{ℜ(α), ℜ(β)} > 0).

The Mittag-Leffler function Eα (1.1) and the extended function Eα,β (1.3) have
been extended in a number of ways and, together with their extensions, applied in
various research areas. For those extensions and applications, we refer the reader,
for example, to [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 25, 27, 30, 31, 32, 33, 35, 36, 37].

Here, for an easier reference, we give a brief history of some chosen extensions
of the Mittag-Leffler function Eα (1.1) and the extended function Eα,β (1.3). Prab-
hakar [25] introduced an extension of the function Eα,β (1.3)

(1.4) Eγ
α,β (z) =

∞∑
n=0

(γ)n
n!Γ (αn+ β)

zn

(z ∈ C; min{ℜ(α), ℜ(β), ℜ(γ)} > 0),

where the familiar Pochhammer symbol (λ)ν is defined (for λ, ν ∈ C) by

(1.5)

(λ)ν : =
Γ (λ+ ν)

Γ (λ)

(
λ+ ν ∈ C \ Z−

0

)
=

{
1 (ν = 0)
λ (λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N) .

Shukla and Prajapati [31] (see also [37]) defined and investigated the following
extension

(1.6) Eγ,q
α,β (z) =

∞∑
n=0

(γ)qn
n!Γ (αn+ β)

zn
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(z ∈ C; min{ℜ(α), ℜ(β), ℜ(γ)} > 0; q ∈ (0, 1) ∪ N).

Salim [28] introduced

(1.7) Eγ,δ
α,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

(δ)n

(z ∈ C; min{ℜ(α), ℜ(β), ℜ(γ), ℜ(δ)} > 0) .

Salim and Faraj [29] generalized the function (1.7)

(1.8) Eγ,δ,q
α,β,p(z) =

∞∑
n=0

(γ)qn
Γ(αn+ β)

zn

(δ)pn(
z ∈ C; min{ℜ(α), ℜ(β), ℜ(γ), ℜ(δ)} > 0; p, q ∈ R+

)
.

Özarslan and Yilmaz [23] presented the following extension

(1.9) Eγ;c
α,β(z; p) =

∞∑
n=0

Bp(γ + n, c− γ)

B(γ, c− γ)

(c)n
Γ(αn+ β)

zn

n!(
z ∈ C; min{ℜ(α), ℜ(β)} > 0; ℜ(c) > ℜ(γ) > 0; p ∈ R+

0

)
.

Here Bp(x, y) is the extended beta function (see [4, 15])

(1.10) Bp(x, y) =

1∫
0

tx−1(1− t)y−1e−
p

t(1−t) dt

(
p ∈ R+

0 ; min{ℜ(x), ℜ(y)} > 0
)
,

whose particular case when p = 0 reduces to the well-known beta function (see,
e.g., [34, Section 1.1])

(1.11)

B(x, y) =

1∫
0

tx−1(1− t)y−1dt (min{ℜ(x), ℜ(y)} > 0)

=
Γ(x) Γ(y)

Γ(x+ y)

(
x, y ∈ C \ Z−

0

)
.

By using the pathway idea in [16] (see also [17, 18]), Nair [20] introduced the
following pathway fractional integral operator

(1.12)
(
Pµ,λ
0+ f

)
(x) = xµ

[ x
α(1−λ)

]∫
0

[
1− α(1− λ)τ

x

] µ
1−λ

f(τ) dτ
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(
ℜ(µ) > 0; α ∈ R+; λ < 1

)
,

where f ∈ L(a, b) (the set of measurable real or complex valued functions) and λ is
a pathway parameter.

Remark 1.1. For a given scalar λ ∈ R, the pathway model for scalar random
variables is represented by the following probability density function (see, e.g., [2])

(1.13) f(x) = c|x|ν−1
[
1− α(1− λ)|x|η

] µ
1−λ

(
x ∈ R; µ ∈ R+

0 , η, ν, [1− α(1− λ)|x|η] ∈ R+
)
,

where c is the normalizing constant and λ is called the pathway parameter. For
λ ∈ R, the normalizing constant c is given as follows (see, e.g., [2]):

(1.14) c =



η [α(1−λ)]
ν
η Γ( ν

η+ µ
1−λ+1)

2 Γ( ν
η )Γ(

µ
1−λ+1)

(λ < 1),

η [α(1−λ)]
ν
η Γ( µ

λ−1 )
2 Γ( ν

η )Γ(
µ

λ−1−
ν
η )

(1 < λ < 1 + η/ν),

η (αµ)
ν
η

2 Γ( ν
η )

(λ → 1).

Setting λ = 0, α = 1 and replacing µ by µ−1 in (1.12) reduces to the well-known
left-sided Riemann-Liouville fractional integral operator Iµa+ (e.g., [3, 22, 24, 26, 38])

(1.15)
(
Pµ−1,0
0+ f

)
(x) = x1−µ Γ(µ)

(
Iµ0+f

)
(x) (ℜ(µ) > 1),

where Iµa+ is defined by

(1.16)
(
Iµa+f

)
(x) :=

1

Γ(µ)

∫ x

a

(x− τ)µ−1 f(τ) dτ (x > a; ℜ(µ) > 0)

and [a, b] (−∞ < a < b < ∞) is a finite interval on the real line R.

In this paper, we aim to introduce (presumably) new and (remarkably) different
extensions of the Mittag-Leffler function, which are also associated with the path-
way fractional integral operator (1.12) to present their integral formulas. Relevant
connections of some particular cases of the main results presented here with those
earlier ones are also pointed out.
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2. Pathway Fractional Integration of an Extended Mittag-Leffler Func-
tion

By considering (1.6) and (1.9) together, we begin by defining a (presumably)
new extension of the Mittag-Leffler function as follows:

(2.1) Eγ,q;c
ρ,β,δ(z; p) =

∞∑
n=0

Bp(γ + nq, c− γ)

B(γ, c− γ)

(c)nq
Γ(ρn+ β)

zn

(δ)n

(
q ∈ R+; min{ℜ(ρ), ℜ(β), ℜ(δ)} > 0; ℜ(c) > ℜ(γ) > 0; p ∈ R+

0

)
,

where Bp(x, y) is the same as in (1.10).

It is easy to see that (2.1) contains the Mittag-Leffler function and each of its
extensions (or generalizations) given in Section 1 as in the following remark.

Remark 2.1.

(i) The particular case of (2.1) when p = 0 and q = 1 reduces to (1.7).

(ii) The particular case of (2.1) when δ = 1 is a generalization of (1.6) and (1.9).

We establish a pathway integration formula involving the extended Mittag-
Leffler function (2.1), which is asserted in Theorem 2.1.

Theorem 2.1. Let ρ, β, γ, δ, c, µ ∈ C with min {ℜ(ρ), ℜ(β), ℜ(δ), ℜ(µ)} > 0 and
ℜ(c) > ℜ(γ) > 0. Also, let ω ∈ R, α, q ∈ R+, and p ∈ R+

0 . Further, let λ < 1 with
ℜ( µ

1−λ ) > −1. Then

(2.2)

Pµ,λ
0+

(
τβ−1Eγ,q;c

ρ,β,δ (ωτ
ρ; p)

)
(x)

=
Γ(1 + µ

1−λ )x
µ+β

[α(1− λ)]β
Eγ,q;c

ρ,β+1+ µ
1−λ ,δ

(
ω

(
x

α(1− λ)

)ρ

; p

)
.

Proof. Let L1 be the left-hand side of (2.10). By applying (2.1) to (1.12), and
interchanging the order of integral and summation, which is verified under the
given conditions in this theorem, we obtain

(2.3)

L1 = xµ
∞∑

n=0

Bp(γ + nq, c− γ)

B(γ, c− γ)

(c)nq
Γ(ρn+ β)

(ω)n

(δ)n

×

[ x
α(1−λ)

]∫
0

τβ+ρn−1
[
1− α(1− λ)τ

x

] µ
1−λ

dτ.
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Setting α(1−λ)τ
x = t and using (1.11), we get

(2.4)
[ x
α(1−λ)

]∫
0

τβ+ρn−1
[
1− α(1− λ)τ

x

] µ
1−λ

dτ =
xβ+ρn

[α(1− λ)]β+ρn

Γ (β + ρn) Γ
(

µ
1−λ + 1

)
Γ
(
β + µ

1−λ + 1 + ρn
) .

Using (2.4) in (2.3), in terms of (2.1), we have

L1 =
xµ+βΓ(1 + µ

1−λ )

[α(1− λ)]β

∞∑
n=0

Bp(γ + nq, c− γ)

B(γ, c− γ)

(c)nq
Γ(ρn+ β + 1 + µ

1−λ )

(
ω
(

x
α(1−λ)

)ρ)n

(δ)n

=
xµ+βΓ(1 + µ

1−λ )

[α(1− λ)]β
Eγ,q;c

ρ,β+1+ µ
1−λ ,δ

(
ω
( x

α(1− λ)

)ρ

; p

)
,

which is the right-hand side of (2.10). This completes the proof. 2

Corollary 2.1. Let ρ, β, γ, c, µ ∈ C with min {ℜ(ρ), ℜ(β), ℜ(µ)} > 0, ℜ(c) >
ℜ(γ) > 0, and ω ∈ R. Also, let λ < 1 with ℜ( µ

1−λ ) > −1. Then

(2.5)

Pµ,λ
0+

(
τβ−1Eγ

ρ,β(ωτ
ρ)
)
(x)

=
xµ+βΓ(1 + µ

1−λ )

[α(1− λ)]β
Eγ

ρ,β+1+ µ
1−λ

(
ω
( x

α(1− λ)

)ρ
)
.

Proof. Setting p = 0, δ = 1, and q = 1 in (2.10) together with (1.4) yields the
desired result (2.5). 2

Corollary 2.2. Let ρ, β, γ, µ ∈ C with min {ℜ(ρ), ℜ(β), ℜ(γ)} > 0 and ℜ(µ) > 1.
Also, let ω ∈ R. Then

(2.6) Pµ−1,0
0+

(
τβ−1 Eγ

ρ,β (ω τρ)
)
(x) = Γ(µ)xµ−1+β Eγ

ρ,β (ω xρ) .

Proof. Setting p = λ = 0, q = δ = α = 1, and replacing µ by µ− 1 in (2.10), and
using (1.4), we are led to (2.6). 2

Corollary 2.3. Let ρ, β, γ, µ ∈ C with min {ℜ(ρ), ℜ(β), ℜ(γ)} > 0 and ℜ(µ) > 1.
Also, let ω ∈ R and q ∈ R+. Then

(2.7) Pµ−1,0
0+

(
τβ−1 Eγ,q

ρ,β (ω τρ)
)
(x) = Γ(µ)xµ−1+β Eγ,q

ρ,β (ω xρ) .

Proof. Setting p = λ = 0, δ = α = 1, and replacing µ by µ− 1 in (2.10), and using
(1.6), we obtain the result (2.7). 2

Corollary 2.4. Let ρ, β, γ, δ, µ ∈ C with min {ℜ(ρ), ℜ(β), ℜ(δ), ℜ(γ)} > 0 and
ℜ(µ) > 1. Also, let ω ∈ R. Then

(2.8) Pµ−1,0
0+

(
τβ−1 Eγ,δ

ρ,β (ω τρ)
)
(x) = Γ(µ)xµ−1+β Eγ,δ

ρ,β+µ (ω xρ) .
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Proof. Setting p = λ = 0, q = α = 1, and replacing µ by µ− 1 in (2.10), and using
(1.7), we obtain the result (2.8). 2

Remark 2.2. For the results (2.5), (2.6), (2.7), and (2.8), we refer the reader,
respectively, to [20, 25, 28, 31, 37]. In view of (1.15), the results (2.6), (2.7), and
(2.8) can yield the corresponding ones for the left-sided Riemann-Liouville fractional
integration operator Iµa+.

We present a further generalization of the Mittag-Leffler function, which is a
slight extension of the extended Mittag-Leffler function in (2.1).

(2.9) Eγ,δ,q;c
ρ,β,s (z; p) =

∞∑
n=0

Bp(γ + nq, c− γ)

B(γ, c− γ)

(c)nq
Γ(ρn+ β)

zn

(δ)sn(
q, s ∈ R+; min{ℜ(ρ), ℜ(β), ℜ(δ)} > 0; ℜ(c) > ℜ(γ) > 0; p ∈ R+

0

)
,

where Bp(x, y) is the same as in (1.10).
It is easy to see that the particular case s = 1 of (2.9) reduces to (2.1). For

more particular cases, see Remark 2.1. We present a pathway integration formula
involving the extended Mittag-Leffler function (2.9), which is asserted in Theorem
2.2.

Theorem 2.2. Let ρ, β, γ, δ, c, µ ∈ C with min {ℜ(ρ), ℜ(β), ℜ(δ), ℜ(µ)} > 0 and
ℜ(c) > ℜ(γ) > 0. Also, let ω ∈ R, α, q, s ∈ R+, and p ∈ R+

0 . Further, let λ < 1
with ℜ( µ

1−λ ) > −1. Then

(2.10)

Pµ,λ
0+

(
τβ−1Eγ,δ,q;c

ρ,β,s (ωτρ; p)
)
(x)

=
Γ(1 + µ

1−λ )x
µ+β

[α(1− λ)]β
Eγ,δ,q;c

ρ,β+1+ µ
1−λ ,s

(
ω

(
x

α(1− λ)

)ρ

; p

)
.

Proof. The proof runs parallel to that of Theorem 2.1. We omit the details. 2

We can also provide many particular cases of Theorem 2.2, including those
results corresponding to Corollaries 2.1–2.4. The details are left to the interested
reader.

3. Concluding Remarks

Among a variety of extensions (or generalizations) of the Mittag-Leffler function,
the extension (2.1) (or (2.9)) seems to be a different one.

One of the Erdélyi-Kober type fractional integrals (see [14, p.105, Eq. (2.6.1)])
appears to be closely related to the pathway fractional integration operator (1.12),
even though one integral cannot contain the other one as a purely special case. For
generalized multi-index Mittag-Leffler functions and their applications, we refer the
reader, for example, to [5] and the references cited therein.
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The main results presented here, as their special cases, include many earlier
ones, in particular, including some of the identities provided by Nair [20] who first
introduced the pathway fractional integral operator (1.12).
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