KYUNGPOOK Math. J. 59(2019), 35-45 https://doi.org/10.5666/KMJ.2019.59.1.35 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On Regular Γ -semihyperrings and Idempotent Γ -semihyperrings

KISHOR FAKIRA PAWAR*

Department of Mathematics, School of Mathematical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon - 425 001, India e-mail: kfpawar@nmu.ac.in

JITENDRA JAYSING PATIL Department of Mathematics, Indraraj Arts, Commerce & Science College, Sillod, Dist Aurangabad - 431 112, India e-mail: jjpatil.777@rediffmail.com

BIJAN DAVVAZ Department of Mathematics, Yazd University, Yazd, Iran e-mail: davvaz@yazd.ac.ir

ABSTRACT. The Γ -semihyperring is a generalization of the concepts of a semiring, a semihyperring and a Γ -semiring. Here, the notions of (strongly) regular Γ -semihyperring, idempotent Γ -semihyperring; invertible set, invertible element in a Γ -semihyperring are introduced, and several examples given. It is proved that if all subsets of Γ -semihyperring are strongly regular then for every $\Delta \subseteq \Gamma$, there is a Δ -idempotent subset of R. Regularity conditions of Γ -semihyperrings in terms of ideals of Γ -semihyperrings are also characterized.

1. Introduction

In 1964, Nobusawa [15] introduced the notion of Γ -rings as a generalization of ternary rings. Barens [3] weakened the conditions in Nobusawa's definition of a Γ -ring. The notion of a Γ -semiring was introduced by Rao [17], generalizing both Γ -rings and semirings. In [13], Krishnamoorthy and Doss introduced the notion of commuting regular Γ -semiring.

^{*} Corresponding Author.

Received April 06, 2017; revised December 20, 2018; accepted January 21, 2019.

²⁰¹⁰ Mathematics Subject Classification: 16Y99, 20N20.

Key words and phrases: Γ -semihyperring, regular (strongly regular) Γ -semihyperring, idempotent Γ -semihyperring.

The concept of a hyperstructure was introduced in 1934 when Marty [14] defined hypergroups based on the notion of a hyperoperation during the 8^{th} Congress of Scandinavian Mathematicians. By analyzing their properties he applied the concepts to group theory. Corsini gave many applications of hyperstructure in several branches of both pure and applied sciences [4, 5].

In 1990, Vougiouklis [18] studied the notion of semihyperring in which both binary operations were hyperoperations; see [1]. The notion of a regular Γ hyperring was introduced in [16]. Davvaz et al. [2, 12] introduced the notion of Γ -semihypergroup as a generalization of semihypergroup. Generalizations of semirings, semihyperrings and Γ -semirings to Γ -semihyperrings can be found in [7, 8, 9, 10, 11, 16].

This paper extends many classical notions of Γ -semirings [17] and Γ -hyperrings [16] to Γ -semihyperrings. Section 2 states some preliminary definitions which are useful to understand the main idea of the paper. The concept of a (strongly) regular Γ -semihyperring with some examples and results are introduced in Section 3. Section 4 introduces the notion of invertible sets (elements) in a Γ -semihyperring and an idempotent Γ -semihyperring that yield some important results.

2. Preliminaries

Here are some useful definitions; for others, the readers referred to [16].

Definition 2.1. Let H be a non-empty set and $\circ : H \times H \to \wp^*(H)$ be a hyperopertion, where $\wp^*(H)$ is the family of all non-empty subsets of H. The couple (H, \circ) is called a *hypergroupoid*. For any two non-empty subsets A and B of H and $x \in H$ we have

$$A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b, A \circ \{x\} = A \circ x \text{ and } \{x\} \circ A = x \circ A.$$

Definition 2.2. A hypergroupoid (H, \circ) is called a *semihypergroup*, if for all $a, b, c \in H$ we have, $(a \circ b) \circ c = a \circ (b \circ c)$. In addition, if for every $a \in H, a \circ H = H = H \circ a$, then (H, \circ) is called a *hypergroup* (for more details about hypergroups and semihypergroups see [4, 6]).

Definition 2.3. A *semihyperring* is an algebraic structure $(R, +, \cdot)$ which satisfies the following properties:

- (i) (R, +) is a commutative semihypergroup; i.e. (x + y) + z = x + (y + z) and x + y = y + x, for all $x, y, z \in R$.
- (ii) (R, \cdot) is a semihypergroup.
- (iii) The hyperoperation \cdot is distributive with respect to the hyperoperation +, i.e., $x \cdot (y+z) = x \cdot y + x \cdot z$, $(x+y) \cdot z = x \cdot z + y \cdot z$, for all $x, y, z \in \mathbb{R}$.
- (iv) The element $0 \in R$ is an absorbing element; i.e. $x \cdot 0 = 0 \cdot x = 0$, for all $x \in R$.

Definition 2.4. A semihyperring $(R, +, \cdot)$ is called *commutative* if and only if $a \cdot b = b \cdot a$ for all $a, b \in R$.

Definition 2.5. Let R be a commutative semihypergroup and Γ be a commutative group. Then, R is called a Γ -semihyperring if there is a map $R \times \Gamma \times R \to \wp^*(R)$ (the image (a, α, b) is denoted by $a\alpha b$ for all $a, b \in R$ and $\alpha \in \Gamma$) and $\wp^*(R)$ is the family of all non-empty subsets of R, satisfy the following conditions:

- (i) $a\alpha(b+c) = a\alpha b + a\alpha c;$
- (ii) $(a+b)\alpha c = a\alpha c + b\alpha c;$
- (iii) $a(\alpha + \beta)c = a\alpha c + a\beta c;$
- (iv) $a\alpha(b\beta c) = (a\alpha b)\beta c$, for all $a, b, c \in R$ and for all $\alpha, \beta \in \Gamma$.

In the above definition, if R is a semigroup, then R is called a *multiplicative* Γ -semihyperring.

Definition 2.6. A Γ -semihyperring R is called *commutative* if $a\alpha b = b\alpha a$, for all $a, b \in R$ and $\alpha \in \Gamma$.

Definition 2.7. A Γ -semihyperring R is said to be *with zero*, if there exists $0 \in R$ such that $a \in a + 0$, $0 \in 0\alpha a$ and $0 \in a\alpha 0$, for all $a \in R$ and $\alpha \in \Gamma$.

Let A and B be two non-empty subsets of a Γ -semihyperring R and $x \in R$. Then,

$$A + B = \{x | x \in a + b, a \in A, b \in B\}$$
$$A\Gamma B = \{x | x \in a\alpha b, a \in A, b \in B, \alpha \in \Gamma\}$$

Definition 2.8. A non-empty subset R_1 of a Γ -semihyperring R is called a Γ -sub semihyperring if it is closed with respect to the multiplication and addition, i.e. $R_1 + R_1 \subseteq R_1$ and $R_1 \Gamma R_1 \subseteq R_1$.

Definition 2.9. A right (left) ideal I of a Γ -semihyperring R is an additive sub semihypergroup of (R, +) such that $I\Gamma R \subseteq I$ $(R\Gamma I \subseteq I)$. If I is both right and left ideal of R, then we say that I is two sided ideal or simply an ideal of R.

To see some examples on Γ -semihyperrings; the notions of Noetherian, Artinian, simple Γ -semihyperringa; and regular relations on Γ -semihyperrings, refer to [16].

3. Regular Γ-semihyperring

In this section, notions of regular sets, regular elements in a Γ -semihyperring are introduced and thereby (strongly) regular Γ -semihyperring is defined. Few examples in this context and characterization of regularity conditions of Γ -semihyperrings in terms of ideals of Γ -semihyperring are discussed.

Definition 3.1. A subset A of a Γ -semihyperring R is said to be regular (strongly regular) if there exist $\Gamma_1, \Gamma_2 \subseteq \Gamma$ and $B \subseteq R$ such that $A \subseteq A\Gamma_1B\Gamma_2A$ ($A = A\Gamma_1B\Gamma_2A$).

A singleton set $\{a\}$ of a Γ -semihyperring is *regular* if there exist $\Gamma_1, \Gamma_2 \subseteq \Gamma$ and $B \subseteq R$ such that

$$\{a\} = a \in a\Gamma_1 B\Gamma_2 a = \{x \in R \mid x \in a\alpha b\beta a, \alpha \in \Gamma_1, \beta \in \Gamma_2, b \in B\}.$$

That is, a singleton set $\{a\}$ of Γ -semihyperring is regular if there exist $\alpha, \beta \in \Gamma, b \in R$ such that $a \in a\alpha b\beta a$. Similarly, a singleton set $\{a\}$ of a Γ -semihyperring is strongly regular if there exist $\alpha, \beta \in \Gamma, b \in R$ such that $\{a\} = a = a\alpha b\beta a$. Simply an element $a \in R$ is said to be *regular (strongly regular)* instead of a singleton set $\{a\}$.

Definition 3.2. A Γ -semihyperring R is said to be *regular (strongly regular)*, if every element of R is regular (strongly regular).

Definition 3.3. An element $e \in R$ is said to be a Γ -*identity* of a Γ -semihyperring R, if $a\alpha e = e\alpha a = a$, for all $a \in R, \alpha \in \Gamma$.

Definition 3.4. A pair (A, B) of subsets of Γ -semihyperring R is said to be (Γ_1, Γ_2) strongly regular (regular) for some $\Gamma_1, \Gamma_2 \subseteq \Gamma$, if $A = A\Gamma_1 B\Gamma_2 A$ $(A \subseteq A\Gamma_1 B\Gamma_2 A)$ and $B = B\Gamma_2 A\Gamma_1 B$ $(B \subseteq B\Gamma_2 A\Gamma_1 B)$.

A pair of elements (a, b) of a Γ -semihyperring R is said to be (α, β) strongly regular (regular) for some $\alpha, \beta \in \Gamma$, if $a = a\alpha b\beta a(a \in a\alpha b\beta a)$ and $b = b\beta a\alpha b(b \in b\beta a\alpha b)$.

Example 3.5. If $R = \{a, b, c, d\}$ then R is a commutative semihypergroup with the following hyperoperations:

+	a	b	c	d
a	$\{a\}$	$\{a,b\}$	$\{a, c\}$	$\{a,d\}$
b	$\{a,b\}$	$\{b\}$	$\{b,c\}$	$\{b,d\}$
c	$\{a,c\}$	$\{b,c\}$	$\{c\}$	$\{c,d\}$
d	$\{a,d\}$	$\{b,d\}$	$\{c,d\}$	$\{d\}$

•	a	b	С	d
a	$\{a\}$	$\{a, b\}$	$\{a, b, c\}$	$\{a, b, c, d\}$
b	$\{a,b\}$	$\{b\}$	$\{b,c\}$	$\{b, c, d\}$
c	$\{a, b, c\}$	$\{b,c\}$	$\{c\}$	$\{c,d\}$
d	$\{a, b, c, d\}$	$\{b, c, d\}$	$\{c,d\}$	$\{d\}$

Then R is a Γ -semihyperring with the operation $x \alpha y \to x \cdot y$ for $x, y \in R$ and $\alpha \in \Gamma$, where Γ is any commutative group. Also every subset of R is strongly regular since $A\Gamma_1 A\Gamma_2 A = A$, for any $\Gamma_1, \Gamma_2 \subseteq \Gamma$. Since all singleton sets of R are strongly regular, it follows that Γ -semihyperring R is strongly regular. **Example 3.6.** Consider the following sets:

$$R = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} | x, y, z, w \in \mathbb{R} \right\}$$
$$\Gamma = \{ z | z \in \mathbb{Z} \}$$
$$A_{\alpha} = \left\{ \begin{pmatrix} \alpha a & 0 \\ 0 & \alpha b \end{pmatrix} | a, b \in \mathbb{R}, \alpha \in \Gamma \right\}.$$

Then R is a Γ -semihyperring under the matrix addition and the hyperoperation $M\alpha N \to MA_{\alpha}N$ for all $M, N \in R$ and $\alpha \in \Gamma$.

Now every invertible matrix $M \in R$ is regular, since $M \in M\alpha M^{-1}\alpha M$ where $\alpha = 1 \in \Gamma$ and $M^{-1} \in R$ is an inverse of M. Also, if we consider K as a collection of all invertible matrices in R then K is a regular subset of R, since $K \subseteq K\alpha K\alpha K$, where $\alpha = 1 \in \Gamma$.

Example 3.7.([16]) Let $(R, +, \cdot)$ be a semihyperring such that $x \cdot y = x \cdot y + x \cdot y$ and Γ be a commutative group. Define $x \alpha y \to x \cdot y$, for every $x, y \in R$ and $\alpha \in \Gamma$. Then R is a Γ -semihyperring.

Example 3.8. Let X be a non-empty finite set and τ be a topology on X. Define the addition hyperoperation and the multiplication on τ as $A, B \in \tau$, $A + B = A \cup B$, $A \cdot B = A \cap B$. Then $(\tau, +, \cdot)$ is a semihyperring with the absorbing element, the additive identity ϕ , and multiplicative identity X.

Example 3.9. Continuing with Example 3.7 and Example 3.8 observe that τ is a Γ -semihyperring if we define $x\alpha y \to x \cdot y$, for every $x, y \in \tau$ and $\alpha \in \Gamma$, where Γ is a commutative group. Further it is strongly regular since $A \in \tau$, then $A\alpha A\beta A = A$, for any $\alpha, \beta \in \Gamma$. Here X is a Γ -identity, since $X\alpha A = A = A\alpha X$, for all $A \in \tau$ and $\alpha \in \Gamma$.

Example 3.10. Let $R = Q^+, \Gamma = \{z | z \in \mathbb{Z}\}$ and $A_\alpha = \alpha \mathbb{Z}^+$. If we define $x \alpha y \to x A_\alpha y, \alpha \in \Gamma$ and $x, y \in R$, then R is a Γ -semihyperring under the ordinary addition and multiplication.

Clearly R is a regular Γ -semihyperring, since for any $x \in R, x \in x\alpha \frac{1}{x}\alpha x$, where $\alpha = 1 \in \Gamma$, that is, every element of R is regular and $(x, \frac{1}{x})$ is a regular pair of elements of Γ -semihyperring R.

Theorem 3.11. Let R be a Γ -semihyperring. If I_1 and I_2 are ideals of R then $I_1 \cap I_2$ is an ideal of R too.

Theorem 3.12. Let R be a Γ -semihyperring with an identity. Then R is regular if and only if for any left ideal A and right ideal B of R, $A \cap B = B\Gamma A$.

Proof. Since A is a left ideal of R, it follows that $B\Gamma A \subseteq R\Gamma A \subseteq A$. Further, since B is a right ideal of R, it follows that $B\Gamma A \subseteq B\Gamma R \subseteq B$. Hence,

$$B\Gamma A \subseteq A \cap B.$$

Let R be regular and $a \in A \cap B$. Then R is regular and there exist $b \in R$ and $\alpha, \beta \in \Gamma$ such that $a \in a\alpha b\beta a \subseteq a\alpha A \subseteq B\Gamma A$. Hence we get,

$$(3.2) A \cap B \subseteq B\Gamma A$$

From Equation (3.1) and (3.2), we have $A \cap B = B\Gamma A$.

In order to prove the converse, assume that $A \cap B \subseteq B\Gamma A$ in R and $a \in R$. Now, $A = R\Gamma a$ is a left ideal and $B = a\Gamma R$ is a right ideal in R. Since R is a Γ -semihyperring with an identity, both ideals A and B contain a. Hence $a \in A \cap B = B\Gamma A = (a\Gamma R)\Gamma(R\Gamma a) = a\Gamma(R\Gamma R)\Gamma a \subseteq a\Gamma R\Gamma a$. Thus there exist $\alpha, \beta \in \Gamma$ and $b \in R$ such that $a \in a\alpha b\beta a$, i.e., $a \in R$ is a regular element. Since a is arbitrary, it follows that R is a regular Γ -semihyperring.

Corollary 3.13. Let R be a commutative Γ -semihyperring with an identity. Then R is regular if and only if $A = A\Gamma A$ for each ideal A of R.

Proof. Suppose that R is regular and A is an ideal of R. Then by Theorem 3.12, $A\Gamma A = A \cap A = A$. Conversely, let R be a Γ -semihyperring satisfying the given condition and $a \in R$. Then $A = a\Gamma R$ is an ideal of R. Since R is a Γ -semihyperring with an identity element, it follows that $a \in A = A\Gamma A = (a\Gamma R)\Gamma(a\Gamma R) = a\Gamma(R\Gamma R)\Gamma a \subseteq a\Gamma R\Gamma a$. Hence an arbitrary element $a \in R$ is regular whence R is a regular Γ -semihyperring.

Theorem 3.12. Let I be an ideal of a regular Γ -semihyperring R. Then I is regular and any ideal J of I is an ideal of R.

Proof. Suppose that I is an ideal of a regular Γ -semihyperring R and $a \in I \subset R$. Since R is regular, it follows that there exist $\alpha, \beta \in \Gamma$ and $b \in R$ such that $a \in a\alpha b\beta a$. Also let $C = b\beta a\alpha b \subseteq I$. Then $a \in a\alpha C\beta a = a\alpha b\beta a\alpha b\beta a$. Hence the ideal I is regular.

We now prove that if $a \in J \subset I$ and $r \in R$, then both $a\alpha r$ and $r\alpha a$ are subsets of J, where $\alpha \in \Gamma$. Let $a\alpha r \subseteq I$. Then each $k \in a\alpha r \subseteq I$ is a regular element in I. Hence there exist $k_1 \in I$ and $\alpha_1, \alpha_2 \in \Gamma$ such that $k \in k\alpha_1k_1\alpha_2k \subseteq k\alpha_1I \subseteq a\alpha r\alpha_1I \subseteq a\alpha I \subseteq J$ since J is an ideal of I. Thus $k \in a\alpha r$ gives $k \in J$. Hence $a\alpha r \subseteq J$. Similar steps leads to $r\alpha a \subseteq J$. Thus an ideal J of I is an ideal of R. \Box

4. Inverse Sets in Γ -semihyperring

In this section notions of an idempotent Γ -semihyperring and inverse sets (elements) in Γ -semihyperring are introduced and demonstrated with examples. Also presented their characterizations and obtained some conditions of existence of strongly regular pairs and idempotent subsets in Γ -semihyperrings.

Definition 4.1. A subset *B* of a Γ -semihyperring *R* is said to be a (Γ_1, Γ_2) *inverse* of *A* if there exist $\Gamma_1, \Gamma_2 \subseteq \Gamma$ such that $A = A\Gamma_1 B\Gamma_2 A$ and $B = B\Gamma_2 A\Gamma_1 B$ denoted by $B \in V_{\Gamma_1}^{\Gamma_2}(A)$.

An element b of a Γ -semihyperring R is said to be a (α, β) inverse of $a \in R$ if there exist $\alpha, \beta \in \Gamma$ such that $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$ denoted by $b \in V_{\alpha}^{\beta}(a)$.

If $B \in V_{\Gamma_1}^{\Gamma_2}(A)$, then the subsets A and B of R are strongly regular subsets of the Γ -semihyperring R.

Lemma 4.2. Let A be a strongly regular subset of Γ -semihyperring R. Then there exists a strongly regular subset B of R such that $B \in V_{\Gamma_1}^{\Gamma_2}(A)$.

Proof. Suppose that A is a strongly regular subset of a Γ -semihyperring R. Then there exist $C \subseteq R$ and $\Gamma_1, \Gamma_2 \subseteq \Gamma$ such that $A = A\Gamma_1 C\Gamma_2 A$. Let $B = C\Gamma_2 A\Gamma_1 C$. Then

$$A\Gamma_1 B\Gamma_2 A = A\Gamma_1 (C\Gamma_2 A\Gamma_1 C)\Gamma_2 A$$
$$= (A\Gamma_1 C\Gamma_2 A)\Gamma_1 C\Gamma_2 A$$
$$= A\Gamma_1 C\Gamma_2 A$$
$$= A$$

and

$$B\Gamma_2 A\Gamma_1 B = (C\Gamma_2 A\Gamma_1 C)\Gamma_2 A\Gamma_1 (C\Gamma_2 A\Gamma_1 C)$$

= $C\Gamma_2 (A\Gamma_1 C\Gamma_2 A)\Gamma_1 C\Gamma_2 A\Gamma_1 C$
= $C\Gamma_2 (A\Gamma_1 C\Gamma_2 A)\Gamma_1 C$
= $C\Gamma_2 A\Gamma_1 C$
= $B.$

Thus $B \in V_{\Gamma_1}^{\Gamma_2}(A)$.

Definition 4.3. A subset E of a Γ -semihyperring R is an *idempotent set* if there exits $\Gamma_1 \subseteq \Gamma$ such that $E\Gamma_1 E = E$. It is referred as E is Γ_1 -*idempotent*.

An element $e \in R$ is said to be *idempotent* if there exits $\alpha \in \Gamma$ such that $e\alpha e = e$. Then e is said to be α -*idempotent*.

Definition 4.4. A Γ -semihyperring R is said to be an *idempotent* Γ -semihyperring if every element of R is idempotent.

Example 4.5.([16]) Let $R = \{a, b, c, d\}, \Gamma = \mathbb{Z}_2$ and $\alpha = \overline{0}, \beta = \overline{1}$. Then R is a Γ -semihyperring with the following hyperoperations

+	a	b	c	d
a	$\{a,b\}$	$\{a,b\}$	$\{c,d\}$	$\{c,d\}$
b	$\{a,b\}$	$\{a, b\}$	$\{c,d\}$	$\{c,d\}$
c	$\{c,d\}$	$\{c,d\}$	$\{a, b\}$	$\{a, b\}$
d	$\{c,d\}$	$\{c,d\}$	$\{c,d\}$	$\{a,b\}$

β	a	b	c	d
a	$\{a, b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$
b	$\{a, b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$
с	$\{a, b\}$	$\{a,b\}$	$\{c,d\}$	$\{c,d\}$
d	$\{a, b\}$	$\{a,b\}$	$\{c,d\}$	$\{c,d\}$

For any $x, y \in R$ we define $x\alpha y = \{a, b\}$. Then clearly $\{a, b\}$ is α -idempotent, β idempotent as well as $\Gamma_1 = \{\alpha, \beta\}$ -idempotent and $\{c, d\}$ is β -idempotent.

Observe that Examples 3.5 and 3.9 are the illustrations of an idempotent Γ semihyperring. It is obvious that if E is Γ_1 -idempotent then E is strongly regular
subset of R and $E \in V_{\Gamma_1}^{\Gamma_1}(E)$, i.e., E is the inverse of itself. Also, idempotent
elements (subsets) of Γ -semihyperring R are strongly regular.

Theorem 4.6. Let R be a Γ -semihyperring. Then $a \in R$ is strongly regular element of R if there is an idempotent element $e \in R$ such that $a = e\alpha x$ and $e = a\beta y$, for some $x, y \in R$ and $\alpha, \beta \in \Gamma$.

Proof. Suppose that *R* is a Γ-semihyperring with condition that for $a \in R$ there is an idempotent element $e \in R$ such that $a = e\alpha x$ and $e = a\beta y$, for some $x, y \in R$ and $\alpha, \beta \in \Gamma$. Since *e* is an idempotent of *R*, it follows that there exists $\gamma \in \Gamma$ such that $e = e\gamma e$ which implies that $a = e\alpha x = (e\gamma e)\alpha x = (a\beta y)\gamma e\alpha x = a\beta y\gamma a$. Consequently, *a* is strongly regular element of the Γ-semihyperring.

Similarly, one can prove that when R is a Γ -semihyperring, then $a \in R$ is strongly regular element of R, if there is an idempotent element $e \in R$ such that $a = x\alpha e$ and $e = y\beta a$, for some $x, y \in R$ and $\alpha, \beta \in \Gamma$.

Lemma 4.7. Let R be a Γ -semihyperring. Let (A, A') be a (Γ_1, Γ_2) strongly regular pair and (B, B') be a (Γ_3, Γ_4) strongly regular pair. Then $A' \Gamma_2 A \Gamma_1 B \Gamma_3 B'$ is a Γ_4 idempotent and $B \Gamma_3 B' \Gamma_4 A' \Gamma_2 A$ is a Γ_1 -idempotent if and only if $(A \Gamma_1 B, B' \Gamma_4 A')$ is a (Γ_3, Γ_2) strongly regular pair.

Proof. Suppose that $A'\Gamma_2A\Gamma_1B\Gamma_3B'$ is Γ_4 -idempotent and $B\Gamma_3B'\Gamma_4A'\Gamma_2A$ is Γ_1 -idempotent. Then, we have

$$(A\Gamma_{1}B)\Gamma_{3}(B'\Gamma_{4}A')\Gamma_{2}(A\Gamma_{1}B) = A\Gamma_{1}A'\Gamma_{2}A\Gamma_{1}B\Gamma_{3}B'\Gamma_{4}A'\Gamma_{2}A\Gamma_{1}B\Gamma_{3}B'\Gamma_{4}B$$
$$= A\Gamma_{1}A'\Gamma_{2}A\Gamma_{1}B\Gamma_{3}B'\Gamma_{4}B$$
$$= A\Gamma_{1}B.$$
$$(B'\Gamma_{4}A')\Gamma_{2}(A\Gamma_{1}B)\Gamma_{3}(B'\Gamma_{4}A') = B'\Gamma_{4}B\Gamma_{3}B'\Gamma_{4}A'\Gamma_{2}A\Gamma_{1}B\Gamma_{3}B'\Gamma_{4}A'\Gamma_{2}A\Gamma_{1}A'$$
$$= B'\Gamma_{4}B\Gamma_{3}B'\Gamma_{4}A'\Gamma_{2}A\Gamma_{1}A'$$
$$= B'\Gamma_{4}A'.$$

Hence $(A\Gamma_1 B, B'\Gamma_4 A')$ is a (Γ_3, Γ_2) strongly regular pair.

For the converse, we have

$$(A'\Gamma_2A\Gamma_1B\Gamma_3B')\Gamma_4(A'\Gamma_2A\Gamma_1B\Gamma_3B') = A'\Gamma_2(A\Gamma_1B\Gamma_3B'\Gamma_4A'\Gamma_2A\Gamma_1B)\Gamma_3B'$$
$$= A'\Gamma_2A\Gamma_1B\Gamma_3B'.$$

That is $A'\Gamma_2A\Gamma_1B\Gamma_3B'$ is Γ_4 -idempotent. Similarly, it can be proved that $B\Gamma_3B'\Gamma_4A'\Gamma_2A$ is Γ_1 -idempotent.

Lemma 4.8. Let R be a commutative Γ -semihyperring. Let $E = E\Gamma_1 E$ and $F = F\Gamma_2 F$ be two idempotent subsets of R. Then there exists an idempotent G such that $(E\Gamma_1 F, G)$ is a (Γ_2, Γ_1) strongly regular pair.

Proof. Since R is a commutative Γ -semihyperring, it follows that $(E\Gamma_1 F)\Gamma_2(E\Gamma_1 F) = E\Gamma_1 F$, i.e., $E\Gamma_1 F$ is idempotent and so strongly regular set. Hence there exist $\Gamma_3, \Gamma_4 \subseteq \Gamma$ and $K \subseteq R$ such that K is an (Γ_3, Γ_4) inverse of $E\Gamma_1 F$. That is $E\Gamma_1 F\Gamma_3 K\Gamma_4 E\Gamma_1 F = E\Gamma_1 F$ and $K\Gamma_4 E\Gamma_1 F\Gamma_3 K = K$. Let $G = F\Gamma_3 K\Gamma_4 E$, then $G\Gamma_1 G = F\Gamma_3 K\Gamma_4 E\Gamma_1 F\Gamma_3 K\Gamma_4 E = F\Gamma_3 K\Gamma_4 E = G$. Therefore G is an idempotent.

$$(E\Gamma_1 F)\Gamma_2 G\Gamma_1 (E\Gamma_1 F) = E\Gamma_1 F\Gamma_2 F\Gamma_3 K\Gamma_4 E\Gamma_1 E\Gamma_1 F$$

= $E\Gamma_1 F\Gamma_3 K\Gamma_4 E\Gamma_1 F$
= $E\Gamma_1 F$.

Also, we have

$$G\Gamma_{1}(E\Gamma_{1}F)\Gamma_{2}G = F\Gamma_{3}K\Gamma_{4}E\Gamma_{1}E\Gamma_{1}F\Gamma_{2}F\Gamma_{3}K\Gamma_{4}E$$
$$= F\Gamma_{3}K\Gamma_{4}E\Gamma_{1}F\Gamma_{3}K\Gamma_{4}E$$
$$= F\Gamma_{3}K\Gamma_{4}E$$
$$= G.$$

Thus, $(E\Gamma_1 F, G)$ is a (Γ_2, Γ_1) strongly regular pair.

Lemma 4.8 shows that, if a commutative Γ -semihyperring R containing Δ_1 -idempotent, Δ_2 -idempotent subsets then it has (Δ_1, Δ_2) strongly regular pair. Further, using Lemma 4.2, we got the following results.

Lemma 4.9. Let R be a Γ -semihyperring in which all subsets are strongly regular. Then for every $\Delta \subseteq \Gamma$, there is a Δ -idempotent subset of R.

Proof. Suppose that A is any subset of a Γ -semihyperring R. Then $A\Delta A$ is strongly regular subset of R, for each $\Delta \subseteq \Gamma$. By Lemma 4.2 there exist $B \subseteq R$ and $\Gamma_1, \Gamma_2 \subseteq \Gamma$ such that $B \in V_{\Gamma_1}^{\Gamma_2}(A\Delta A)$ that is $(A\Delta A)\Gamma_1 B\Gamma_2(A\Delta A) = A\Delta A$ and $B = B\Gamma_2(A\Delta A)\Gamma_1 B$. Let $E = A\Gamma_1 B\Gamma_2 A$. Then

$$E\Delta E = A\Gamma_1 B\Gamma_2 A \Delta A \Gamma_1 B\Gamma_2 A$$

= $A\Gamma_1 (B\Gamma_2 A \Delta A \Gamma_1 B) \Gamma_2 A$
= $A\Gamma_1 B\Gamma_2 A$
= $E.$

Therefore E is a Δ -idempotent subset of R.

Let R be a Γ -semihyperring and R^* be a collection of all non-empty subsets of R. Consider $R^*_{\Delta} = \{A\Delta B | A, B \in R^* \text{ and } \Delta \subseteq \Gamma\}$. Clearly, R^*_{Δ} is a semigroup since $A, B \in R^*$ implies that $A\Delta B \in R^*$ and $(A\Delta B)\Delta C = A\Delta(B\Delta C)$. By Lemma 4.9, it can be proved that every element of R^*_{Δ} has right and left identity as well as right and left inverse with the given conditions.

Theorem 4.10. Let R be a Γ -semihyperring and all subsets of R be strongly regular. Then R^*_{Δ} has an identity and every element of R^*_{Δ} has a right (left) inverse if $E\Delta F = F$ and $E\Delta_1 F = E$ for any Δ -idempotent subset E and Δ_1 -idempotent subset F of R.

Proof. Suppose that $E\Delta F = F$ and $E\Delta_1 F = E$ for any Δ -idempotent E and Δ_1 -idempotent F. Then by Lemma 4.9, for $\Delta \subseteq \Gamma$ there exists an idempotent $E \subseteq R$ such that $E = E\Delta E$. Since all subsets of R are strongly regular, it follows that for any $G \subseteq R$ there exist Γ_1, Γ_2 subsets of Γ and $B \subseteq R$ such that $G = G\Gamma_1B\Gamma_2G$. Now, $(G\Gamma_1B)\Gamma_2(G\Gamma_1B) = (G\Gamma_1B\Gamma_2G)\Gamma_1B = G\Gamma_1B$ and $(B\Gamma_2G)\Gamma_1(B\Gamma_2G) = B\Gamma_2(G\Gamma_1B\Gamma_2G) = B\Gamma_2G$. Thus $G\Gamma_1B$ is Γ_2 -idempotent and $B\Gamma_2G$ is a Γ_1 - idempotent. Then by given condition, we have $(B\Gamma_2G)\Delta E = B\Gamma_2G$. Then $G\Delta E = (G\Gamma_1B\Gamma_2G)\Delta E = G\Gamma_1(B\Gamma_2G\Delta E) = G\Gamma_1B\Gamma_2G = G$. Hence E is the right identity in R^*_{Δ} . Similarly we can show E is the left identity in R^*_{Δ} . That is E is an identity in R^*_{Δ} . Again, since $G\Delta G \subseteq R$, it follows that there exist subsets Δ_1, Δ_2 of Γ and $D \subseteq R$ such that $(G\Delta G)\Delta_1D\Delta_2(G\Delta G) = G\Delta G$, then $G\Delta G\Delta_1D$ is an Δ_2 -idempotent. Hence by the given condition; $(G\Delta G\Delta_1D)\Delta_2E = E$ we get $G\Delta(G\Delta_1D\Delta_2E) = E$. Hence for any $G \subseteq R$, there is the right inverse of G in R^*_{Δ} .

Conclusion. In this paper we have studied the nature of sets and elements of Γ -semihyperring with variety of examples and results. The relation between strongly regular elements and idempotent elements of a Γ -semihyperring has been developed. The notion of ideals of a Γ -semihyperring could characterize the regularity conditions of Γ -semihyperring.

Acknowledgements. The authors express their gratitude to anonymous referees for useful comments and suggestions that improved the present paper.

References

- R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math. Sci. Cryptogr., 10(1)(2007), 41–54.
- [2] S. M. Anvariyeh, S. Mirvakilli and B. Davvaz, On Γ-hyperideals in Γ-semihypergroups, Carpathian J. Math., 26(2010), 11–23.

- [3] W. E. Barenes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(1966), 411-422.
- [4] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [5] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwr Academic Publishers, Dordrecht, 2003.
- [6] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007.
- S. O. Dehkordi and B. Davvaz, A strong regular relation on Γ-semihyperrings, J. Sci. Islam. Repub. Iran, 22(3)(2011), 257–266.
- [8] S. O. Dehkordi and B. Davvaz, Γ-semihyperrings: Approximations and rough ideals, Bull. Malays. Math. Soc. (2), 35(4)(2012), 1035–1047.
- S. O. Dehkordi and B. Davvaz, Γ-semihyperring: Fundamental rings and complex product, Bull. Allahabad Math. Soc., 29(2)(2014), 111–135.
- [10] S. O. Dehkordi and B. Davvaz, Γ-semihyperrings: ideals, homomorphisms and regular relations, Afr. Mat., 26(2015), 849–861.
- [11] H. Hedayati and B. Davvaz, Fundamental relation on Γ-hyperrings, Ars Combin., 100(2011), 381–394.
- [12] D. Heidari, S. O. Dehkordi and B. Davvaz, Γ-semihypergroups and their properties, Politehn. Univ. Bucharest Sci. Bull. Ser. A: Appl. Math. Phys., 72(2010), 195–208
- [13] S. Krishnamoorthy and R. Arul Doss, Commuting regular Γ-semiring, Int. J. Math. Comput. Sci., 4(8)(2010), 376–378.
- [14] F. Marty, Sur une generalization de la notion de groupe, 8th congres des Mathematicians Scandinaves, Stockholm, (1934), 45-49.
- [15] N. Nobusawa, On generalization of the ring theory, Osaka J. Math., 1(1)(1964), 81– 89.
- [16] S. Ostadhadi-Dehkordi and B. Davvaz, *Ideal theory in Γ-semihyperrings*, Iran. J. Sci. Tech. Trans. A Sci., **37(3)**(2013), 251–263.
- [17] M. M. K. Rao, Γ-semirings. I, Southeast Asian Bull. Math., 19(1)(1995), 49–54.
- [18] T. Vougiouklis, On some representations of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II: Math., 26(1990), 21–29.