References
- Ali MA, Mehmood MI, Nawaz R, et al. Influence of substrate pasteurization methods on the yield of oyster mushroom (Pleurotus species). Pak J Agri Sci. 2007;44:300-303.
- Sadler M. Nutritional properties of edible fungi. Nutr Bull. 2003;28:305-338. https://doi.org/10.1046/j.1467-3010.2003.00354.x
- Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002;60:258-274. https://doi.org/10.1007/s00253-002-1076-7
- Sanchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol. 2010;85:1321-1337. https://doi.org/10.1007/s00253-009-2343-7
- Girmay Z, Gorems W, Birhanu G, et al. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express. 2016;6:87. https://doi.org/10.1186/s13568-016-0265-1
- Rigas F, Papadopoulou K, Philippoussis A, et al. Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non- sterile conditions multilevel factorial design. Water Air Soil Pollut. 2009;197:121-129. https://doi.org/10.1007/s11270-008-9795-8
- Asgher M, Shah SAH, Ali M, et al. Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microbiol Biotechnol. 2006;22:89-93. https://doi.org/10.1007/s11274-005-5743-6
- Flores C, Casasanero R, Trejo-Hernandez MR, et al. Production of laccases by Pleurotus ostreatus in submerged fermentation in co-culture with Trichoderma viride. J Appl Microbiol. 2010;108: 810-817. https://doi.org/10.1111/j.1365-2672.2009.04493.x
- Sher H, Al-Yemeni M, Bahkali AHA, et al. Effect of environmental factors on the yield of selected mushroom species growing in two different agro ecological zones of Pakistan. Saudi J Biol Sci. 2010; 17:321-326. https://doi.org/10.1016/j.sjbs.2010.06.004
- Xu F, Li ZM, Liu Y, et al. Evaluation of edible mushroom Oudemansiella canarii cultivation on different lignocellulosic substrates. Saudi J Biol Sci. 2016;23:607-613. https://doi.org/10.1016/j.sjbs.2015.07.001
- Sainos E, Diaz-Godinez G, Loera O, et al. Growth of Pleurotus ostreatus on wheat straw and wheatgrain- based media: biochemical aspects and preparation of mushroom inoculum. Appl Microbiol Biotechnol. 2006;72:812-815. https://doi.org/10.1007/s00253-006-0363-0
- Mamiro DP, Royse DJ. The influence of spawn type and strain on yield, size, and mushroom solids content of Agaricus bisporus produced on noncomposted and spent mushroom compost. Bioresour Technol. 2008;99:3205-3212. https://doi.org/10.1016/j.biortech.2007.05.073
- Frieal MT, McLoughlin AJ. Production of a liquid inoculums/spawn of Agaricus bisporus. Biotechnol Lett. 2000;22:351-354. https://doi.org/10.1023/A:1005616516646
- Obodai M, Cleland-Okine J, Vowotor KA. Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J Ind Microbiol Biotechnol. 2003;30:146-149. https://doi.org/10.1007/s10295-002-0021-1
- Jo WS, Rew YH, Choi SG, et al. Effect of various sawdusts and logs media on the fruiting body formation of Phellinus gilvus. Mycobiology. 2007;35: 6-10. https://doi.org/10.4489/MYCO.2007.35.1.006
- Zhang RY, Hu DD, Ma XT, et al. Adapting stick spawn reduced the spawn running time and improved mushroom yield and biological efficiency of Pleurotus eryngii. Sci Hortic. 2014;175:156-159. https://doi.org/10.1016/j.scienta.2014.05.028
- Wang LQ, Li YF, Liu DH, et al. Immobilization of mycelial pellets from liquid spawn of oyster mushroom based on carrier adsorption. HortTechnology. 2011;21:82-86. https://doi.org/10.21273/HORTTECH.21.1.82
- Rosado FR, Kemmelmeier C, Da Costa SM. Alternative method of inoculums and spawn production for the cultivation of the edible Brazilian mushroom Pleurotus ostreatoroseus SING. J Basic Microbiol. 2002;42:37-44. https://doi.org/10.1002/1521-4028(200203)42:1<37::AID-JOBM37>3.0.CO;2-S
- Kawai G, Kobayashi H, Fukushima Y, et al. Effect of liquid mycelial culture used as a spawn on sawdust cultivation of shiitake (Lentinula edodes). Mycoscience. 1996;37:201-207. https://doi.org/10.1007/BF02461345
- Ma L, Lin YQ, Yang C, et al. Production of liquid spawn of an edible mushroom, Sparassis latifolia by submerged fermentation and mycelial growth on pine wood. Sci Hortic. 2016;209:22-30. https://doi.org/10.1016/j.scienta.2016.06.001
- Liu SR, Zhang WR, Kuang YB. Production of stalk spawn of an edible mushroom (Pleurotus ostreatus) in liquid culture as a suitable substitute for stick spawn in mushroom cultivation. Sci Hortic. 2018; 240:572-577. https://doi.org/10.1016/j.scienta.2018.06.068
- Tang YJ, Zhong JJ. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol. 2002;31:20-28. https://doi.org/10.1016/S0141-0229(02)00066-2
- Zervakis G, Philippoussis A, Ioannidou S, et al. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol (Praha). 2001;46:231-234. https://doi.org/10.1007/BF02818539
- Yang WJ, Guo FL, Wan ZJ. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J Biol Sci. 2013;20:333-338. https://doi.org/10.1016/j.sjbs.2013.02.006
- Rodriguez Estrada AE, Jimenez-Gasco M, Royse DJ. Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresour Technol. 2009;100: 5270-5276. https://doi.org/10.1016/j.biortech.2009.02.073
- Levitz SM, Diamond RD. A rapid colorimetric assay of fungal viability with the tetrazolium salt MTT. J Infect Dis. 1985;152:938-945. https://doi.org/10.1093/infdis/152.5.938
- Feng J, Feng N, Zhang JS, et al. A new temperature control shifting strategy for enhanced triperpene production by Ganoderma lucidum G0119 based on submerged liquid fermentation. Appl Biochem Biotechnol. 2016;180:740-752. https://doi.org/10.1007/s12010-016-2129-1
- Liu YK, Seki M, Tanaka H, et al. Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. J Biosci Bioeng. 1998;85: 416-421.
- Iqbal M, Zafar SI. Bioactivity of immobilized microalgal cells: application potential of vegetable sponge in microbial biotechnology. Lett Appl Microbiol. 1993;17:289-291. https://doi.org/10.1111/j.1472-765X.1993.tb01469.x
- Iqbal M, Zafar SI. Vegetable sponge as a matrix to immobilize micro-organisms: a trial study for hyphal fungi, yeast and bacteria. Lett Appl Microbiol. 1994;18:214-217. https://doi.org/10.1111/j.1472-765X.1994.tb00850.x
- Santos DT, Sarrouh BF, Rivaldi JD, et al. Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. J Food Eng. 2008;86:542-548. https://doi.org/10.1016/j.jfoodeng.2007.11.004
- Zhu HJ, Wang WH, Liu JH, et al. Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of acetylisovaleryltylosin. J Ind Microbiol Biotechnol. 2015;42:105-111. https://doi.org/10.1007/s10295-014-1545-x
- Wan-Mohtar WAAQI, Abd Malek R, Harvey LM, et al. Exopolysaccharide production by Ganoderma lucidum immobilised on polyurethane foam in a repeated-batch fermentation. Biocatal Agric Biotechnol. 2016;8:24-31. https://doi.org/10.1016/j.bcab.2016.08.002
- Prasad KK, Mohan SV, Bhaskar YV, et al. Laccase production using Pleurotus ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: influence of culture conditions. J Microbiol Biotechnol. 2005;43:301-307.
- Haapala A, Linko S. Production of Phanerochaete chrysosporium lignin peroxidase under various culture conditions. Appl Microbiol Biotechnol. 1993;40:494-498. https://doi.org/10.1007/BF00175737
- Samir AM, Mahmoud AK. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofah sponge. Bioresour Technol. 2009;100:374-379. https://doi.org/10.1016/j.biortech.2008.06.024
- Mohammadi A, Enayatzadeh M, Nasernejad B. Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse. J Hazard Mater. 2009;161:534-537. https://doi.org/10.1016/j.jhazmat.2008.03.132
- Zhang A, Wang G, Gong G, et al. Immobilization of white rot fungi to carbohydrate-rich corn cob as a basis for tertiary treatment of secondarily treated pulp and paper mill wastewater. Ind Crop Prod. 2017;109:538-541. https://doi.org/10.1016/j.indcrop.2017.09.006
- Silverio SC, Moreira S, Milagres AM, et al. Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study. Bioprocess Biosyst Eng. 2013;36:365-373. https://doi.org/10.1007/s00449-012-0793-2
- Mukhopadhyay R, Chatterjee S, Chatterjee BP, et al. Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int Dairy J. 2005;15:299-303. https://doi.org/10.1016/j.idairyj.2004.07.010
- Mazmanci MA, Unyayar A. Decolourisation of reactive black 5 by Funalia trogii immobilised on Luffa cylindrical sponge. Process Biochem. 2005;40:337-342. https://doi.org/10.1016/j.procbio.2004.01.007
- Gaitan-Hernandez R, Salmones D. Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions. Sci Hortic. 2008;118:106-110. https://doi.org/10.1016/j.scienta.2008.05.029
- Wang SX, Xu F, Li ZM, et al. The spent mushroom substrate of Hypsizigus marmoreus can be an effective component for growing the oyster mushroom Pleurotus ostreatus. Sci Hortic. 2015;186:217-222. https://doi.org/10.1016/j.scienta.2015.02.028
Cited by
- A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity in vitro and chemical structure vol.1220, 2019, https://doi.org/10.1016/j.molstruc.2020.128717
- Successful Rescue of Wild Trametes versicolor Strains Using Sawdust and Rice Husk-based Substrate vol.24, pp.3, 2019, https://doi.org/10.3923/pjbs.2021.374.382
- Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview vol.49, pp.1, 2019, https://doi.org/10.1080/12298093.2020.1835142