DOI QR코드

DOI QR Code

Change of Subalpine Coniferous Forest Area over the Last 20 Years

아고산 침엽수림 분포 면적의 20년간 변화 분석

  • Kim, Eun-Sook (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Lee, Ji-Sun (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Park, Go-Eun (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Division of Forest Ecology and Climate Change, National Institute of Forest Science)
  • 김은숙 (국립산림과학원 기후변화생태연구과) ;
  • 이지선 (국립산림과학원 기후변화생태연구과) ;
  • 박고은 (국립산림과학원 기후변화생태연구과) ;
  • 임종환 (국립산림과학원 기후변화생태연구과)
  • Received : 2019.01.04
  • Accepted : 2019.01.28
  • Published : 2019.03.31

Abstract

The purpose of this study is to identify the long-term area changes in the subalpine coniferous forests in Korea in order to understand the changes in the subalpine forest ecosystems vulnerable to climate change. We analyzed 20 years of time-series Landsat satellite images (mid 1990s, mid 2010s) for change detection of coniferous forests and compared with the long term changes of climate information to identify their relationship in the study area. As a result, the area of coniferous forests in the study region decreased by 25% over 20 years. The regions with largest changes are Seoraksan, Baegunsan-Hambaeksan-Jangsan, Jirisan, and Hallasan. The region with the largest decrease in area was Baegunsan (reduced area: 542 ha), and the region with large decrease in area and the largest rate of decrease was Hallasan (rate of decrease: 33.3%). As the Jeju region has the most rapid temperature rise, it is projected that Hallasan is the most vulnerable forest ecosystem affected by climate change. The result of this study shows that from a long-term perspective the overall coniferous forests in the subalpine region are declining, but the trend varies in each region. This national and long-term information on the change of coniferous forests in the subalpine region can be utilized as baseline data for the detailed survey of endangered subalpine coniferous trees in the future.

본 연구는 기후변화로 점차 취약해지고 있는 아고산 산림생태계의 변화 및 쇠퇴 실태를 파악하기 위해 전국 아고산 지역 침엽수림의 장기 면적 변화를 파악하는 것을 주요 목적으로 하였다. 1990년대 중반 이후 20년간의 침엽수림 면적 변화 탐지를 위해 시계열 Landsat 위성영상을 분석하였고, 침엽수림 면적과 기후정보의 장기적 변화를 함께 비교하였다. 그 결과, 전체 분석대상지에서 침엽수림의 면적은 20년 동안 약 25 % 감소한 것으로 나타났다. 면적과 변화율의 측면에서 큰 변화가 있었던 지역은 설악산, 백운산-함백산-장산, 지리산, 한라산 등이었다. 이 중 감소면적이 가장 큰 지역은 백운산 지역이었으며(감소면적 542 ha), 침엽수림이 대면적으로 집단화되어 있으면서 감소율이 가장 큰 지역은 한라산이었다(감소율 33.3 %). 제주 지역은 타 지역보다 온도상승이 가장 가파르게 진행되고 있어 한라산이 기후변화 압력에 의한 산림생태계 취약성이 가장 높을 것으로 추정된다. 본 연구결과는 장기적인 관점에서 전체적으로 아고산대 산림지역의 임상이 침엽수림이 감소하는 방향으로 변화하고 있으나 그 추세는 각 지역별로 정도의 차이가 있다는 것을 보여주었다. 본 연구의 전국적이고 장기적인 아고산 지역 침엽수림 변화 정보는 향후 지역별로 수행될 상세한 멸종위기 아고산 침엽수 정밀실태조사 수행을 위한 기초자료로 활용될 수 있다.

Keywords

HOMHBJ_2019_v108n1_10_f0001.png 이미지

Figure 1. Study sites and Path-Row of Landsat images.

HOMHBJ_2019_v108n1_10_f0002.png 이미지

Figure 2. Trend of average annual temperature change over 40 years by major region (a) Near Seoraksan (b) Near Baegunsan (c) Near Jirisan (d) Near Hallasan.

Table 1. Main distribution regions of conifer species in subalpine zone.

HOMHBJ_2019_v108n1_10_t0001.png 이미지

Table 2. Location and area of study sites.

HOMHBJ_2019_v108n1_10_t0002.png 이미지

Table 3. Satellite images.

HOMHBJ_2019_v108n1_10_t0003.png 이미지

Table 4. Change analysis of coniferous forest area in all study sites.

HOMHBJ_2019_v108n1_10_t0004.png 이미지

Table 5. Status of coniferous forest with great reduction areas.

HOMHBJ_2019_v108n1_10_t0005.png 이미지

Table 6. Comparison of average temperature change between T1(1976~1985) and T2(2006~2015).

HOMHBJ_2019_v108n1_10_t0006.png 이미지

References

  1. Castello, J.D., Donald, J.L. and Peter, J.S. 1995. Pathogens, patterns, and processes in forest ecosystems. Bioscience 45(1): 16-24. https://doi.org/10.2307/1312531
  2. Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1): 37-46. https://doi.org/10.1177/001316446002000104
  3. Freedman, B. 1989. Environmental ecology : the impacts of pollution and other stresses on ecosystem structure and function. Academic Press. San Diego. pp. 424.
  4. Grabherr, G. 2003. Alpine vegetation dynamics and climate change-a synthesis of long-term strudies and observations. pp. 399-409. In : Nagy, L., Grabnerr, G., Körner, C. and Thomson, D.B.A. (Ed.). Alpine biodiversity in Europe. Springer, Berlin, Heidelberg, New York.
  5. IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC. Geneva. Switzerland. pp. 151.
  6. Jensen, J.R. 2005. Introduction digital image processing : A remote sensing perspective. Pearson Education Inc. pp. 526.
  7. Kim, N.S. and Lee, H.C. 2013. A study on changes and distributions of Korean fir in sub-alpine zone. Journal of Korean Environmental Restoration and Revegetation Technology 16(5): 49-57. (in Korean with English abstract)
  8. KMA (Korea Meteorological Administration). 2017. Longterm climate data (1975-2017) in 8 weather stations. National Climate Data Service System. http://sts.kma.go.kr. (2017. 11).
  9. Kong, W.S. 2004. Species Composition and distribution of native Korean conifers. Journal of Korean Geographical Society 39(4): 528-543. (in Korean with English abstract)
  10. Kong, W.S. 2007. Geography and ecology of our plants in the light of biogeography. Geobook. pp. 335.
  11. Kong, W.S., Kim, K., Lee, S., Park, H. and Cho, S.H. 2014. Distribution of high mountain plants and species vulnerability against climate change. Journal of Environmental Impact Assessment 23(2): 119-136. (in Korean with English abstract) https://doi.org/10.14249/eia.2014.23.2.119
  12. Lee, S.W., Won, H.K., Jung, Y.H., Jung, J.H., Koo, K.S., Kang, Y.H., Son, Y.M. and Shin, M.Y. 2009. Research and application for species-specific optimal plantation sites. NIFoS Report 09-01. National Institute of Forest Science. pp. 128.
  13. Manion, P.D., Lachance, D. 1992. Forest decline concepts. The American Phytopathological Society. pp. 249.
  14. Mueller-Dombois, D. 1987. Natural dieback in forests. Bioscience 37(8): 575-583. https://doi.org/10.2307/1310668
  15. Nagy, L. and Grabherr, G. 2009. The biology of alpine habitats. Oxford University Press. pp. 376.
  16. Park, H.C., Lee, J.H., Lee, G.G. and Um, G.J. 2015. Environmental features of the distribution areas and climate sensitivity assessment of Korean fir and Khinghan fir. Journal of Environmental Impact Assessment 24(3): 260-277. (in Korean with English abstract) https://doi.org/10.14249/eia.2015.24.3.260
  17. Prinz, B. 1987. Major hypotheses, factors, and causes of forest damage in Europe. Environment 29(9): 11-37. https://doi.org/10.1080/00139157.1987.9931357
  18. Song, K.M., Kim, C.S., Koh, J.G., Kang, C.H. and Kim, M.H. 2010. Vegetation structure and distributional characteristics of Abies koreana forests in Mt. Halla. Journal of the Environmental Sciences 19(4): 415-425. (in Korean with English abstract) https://doi.org/10.5322/JES.2010.19.4.415
  19. Song, K.M., Kim, J., Kang, Y.J., Choi, H.S., Jeong, S.C., Lee, S.Y., Lee, J.H., Koh, J.K., Kim, J.G., Lee, K.H., Hong, Y.P., Lim, J.H. and Kim, C.S. 2016. Korean fir in Hallasan Mountain: Why are they dying?. National Institute of Forest Science. pp. 131.
  20. USGS (United States Geological Survey). 2017. Landsat 5, 8 archive data. Earth Explorer homepage. https://earthexplorer.usgs.gov. (2016. 12, 2017. 11).
  21. Won, M.S., Jang, K.C., Yoon, S.H., Song, B.I., Yoo, H.M. and Lim, J.H. 2016. National automatic mountain meteorology observation system(AMOS). NIFoS Report #688. pp. 535.
  22. Yoon, K.H. and Kong, W.S. 2011. Distribution and climate factors of jezo spruce native to the Sub-Alpine zone in the Korean peninsula. The Korean Geographical Society Proceedings of Conference on Geography: 68-72. (in Korean with English abstract).

Cited by

  1. Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea vol.45, pp.1, 2019, https://doi.org/10.1186/s41610-021-00182-1