DOI QR코드

DOI QR Code

복합 잡음 환경에서 공간적 특성을 고려한 잡음 제거

Noise Removal with Spatial Characteristics in Mixed Noise Environment

  • Cheon, Bong-Won (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • 투고 : 2018.11.02
  • 심사 : 2018.11.18
  • 발행 : 2019.03.31

초록

최근 다양한 분야에서 영상매체의 사용 빈도가 증가함에 따라 신호처리의 중요성이 높아지고 있다. 하지만 송수신 과정에서 많은 종류의 잡음이 발생하며 신호의 정보에 영향을 미치고 있으며, 이러한 이유로 잡음 제거를 전처리 과정으로서 필수적으로 행한다. 본 논문에서는 임펄스 잡음과 AWGN이 혼합된 잡음을 제거하기 위한 알고리즘을 제안하였다. 제안한 알고리즘은 복합 잡음 환경에서 효율적인 잡음 제거를 위해 잡음 판단을 통해 영상 복원을 진행하며, 공간적 특성과 화소 변화를 고려하여 잡음을 제거한다. 시뮬레이션 결과 제안한 알고리즘은 기존 방법과 달리 두 잡음의 영향을 모두 최소화하여 잡음을 제거하여 우수한 잡음제거 특성을 나타내었으며, 객관적인 판단을 위해 PSNR 및 프로파일 등을 이용하여 비교 및 분석하였다.

Recently, the importance of signal processing has become gradually significant, as the frequency of video media increases in various fields. However, numerous kinds of noise generated in the transmission and reception processes can possibly affect the signal information, and the noise removal is for that reason essential as a preprocessing step. In this paper, we propose an algorithm to remove the mixed noise which is composed of impulse noise and AWGN. This algorithm is used for image restoration by noise judgment for efficient noise removal in a complex noise environment, and the noise is removed by considering spatial characteristics and pixel variations. Simulation results show that unlike existing methods, the algorithm has excellent noise cancellation characteristics by minimizing both noise effects and consequently eliminating the mixed noise; for objective judgment, we compared and analyzed the data using PSNR and profile.

키워드

HOJBC0_2019_v23n3_254_f0001.png 이미지

Fig. 1 Section mask of proposed algorithm

HOJBC0_2019_v23n3_254_f0002.png 이미지

Fig. 2 Flow-chart of proposed algorithm

HOJBC0_2019_v23n3_254_f0003.png 이미지

Fig. 3 Enraged boat image with mixed noise with profile (a) Original image (b) Noise image ( σ = 10, P = 30%)

HOJBC0_2019_v23n3_254_f0004.png 이미지

Fig. 4 Enlarged filtering boat image with profile (a) A-TMF (b) WF (c) CWMF (d) PFA

HOJBC0_2019_v23n3_254_f0005.png 이미지

Fig. 5 PSNR with AWGN (a) Boat image (b) Peppers image

Table. 1 PSNR comparison or each filter(Boat)

HOJBC0_2019_v23n3_254_t0001.png 이미지

Table. 2 PSNR comparison or each filter(Peppers)

HOJBC0_2019_v23n3_254_t0002.png 이미지

참고문헌

  1. H. Y. Deng, Q. X. Zhu, and X. L. Song, "A Nonlinear Diffusion for Salt and Pepper Noise Removal," in 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu : China, pp. 231-234, 2016.
  2. P. S. V. S. Sridhar, and R. Caytiles, "Efficient Cloud Data Hosting Availability," Asia-pacific Journal of Convergent Research Interchange, HSST, vol. 3 no. 2, pp. 11-19, Jun. 2011. http://dx.doi.org/10.21742/APJCRI.2017.06.02.
  3. S. Muthukumar, P. Pasupathi, S. Deepa, and N. Krishnan, "An Efficient Color Image Denoising Method for Gaussian and Impulsive Noises with Blur Removal," in 2010 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore : India, pp. 1-4, 2010.
  4. M. S. Darus, S. N. Sulaiman, I. S. Isa, Z. Hussain, N. M. Tahir, and N. A. M. Isa, "Modified Hybrid Median Filter for Removal of Low Density Random-Valued Impulse Noise in Images," in 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Batu Ferringhi : Malaysia, pp. 528-533, 2016.
  5. X. Long, and N. H. Kim, "An Image Restoration using Nonlinear Filter in Mixed Noise Environment," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 10, pp. 2447-2453, Oct. 2013. https://doi.org/10.6109/jkiice.2013.17.10.2447
  6. N. Arazm, A. Sahab, and M. F. Kazemi, "Noise Reduction of SEM Images using Adaptive Wiener Filter," in 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), Phuket : Thailand, pp. 50-55, 2017.
  7. G. Thanakumar, S. Murugappriya, and G. R. Suresh, "High Density Impulse Noise Removal using BDND Filtering Algorithm," in 2014 International Conference on Communication and Signal Processing, Melmaruvathur : India, pp. 1958-1962, 2014.
  8. S. I. Kwon, and N. H. Kim, "A Study on Multiple Filter for Mixed Noise Removal," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 11, pp. 2029-2036, Nov. 2017. https://doi.org/10.6109/JKIICE.2017.21.11.2029
  9. P. H. Sangave, and G. P. Jain, "Impulse Noise Detection and Removal by Modified Boundary Discriminative Noise Detection Technique," in 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam : India, pp. 715-719, 2017.
  10. A. Sharma, and V. Chaurasia, "Removal of High Density Salt-And-Pepper Noise by Recursive Enhanced Median Filtering," in 2014 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat : India, pp. 1-4, 2014.
  11. H. Choi, and I. G. Lee, "Additive Noise Reduction Algorithm for Mass Spectrum Analyzer," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 1, pp. 33-39, Jan. 2018. https://doi.org/10.6109/JKIICE.2018.22.1.33
  12. S. Lahmiri, and M. Boukadoum, "Hybrid Wiener and Partial Differential Equations Filter for Biomedical Image Denoising," in IEEE International New Circuits and Systems Conference (NEWCAS), Vancouver : Canada, pp. 26-29, 2016.
  13. S. I. Kwon, and N. H. Kim, "Salt and Pepper Noise Removal using Cubic Spline Interpolation," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 10, pp. 1955-1960, Oct. 2016. https://doi.org/10.6109/JKIICE.2016.20.10.1955
  14. S. I. Kwon, and N. H. Kim, "Noise Removal using Modified Switching Filter in Mixed Noise Environments," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 6, pp. 1215-1220, Jun. 2016. https://doi.org/10.6109/jkiice.2016.20.6.1215
  15. C. Suganya, and O. Umamaheswari, "Image Restoration using Noise Adaptive Fuzzy Switching Weighted Median Filter for the Removal of Impulse Noise," in 2011 Defense Science Research Conference and Expo (DSR), Singapore : Singapore, pp. 1-4, 2011.

피인용 문헌

  1. 가중 팔각형 메디안 필터를 이용한 영상 복원 vol.25, pp.2, 2021, https://doi.org/10.6109/jkiice.2021.25.2.202