FIGURE 1. Interrelations among GEO, GEOSS, CEOS, and Open Data Cube
FIGURE 2. Data Cube task in AOGEOSS (edited and excerpted from https://aogeoss.com/en/staticpages/index.php/task)
FIGURE 3. The status of the country-based data cube, as of December 2018 (edited country development at https://www.opendatacube.org/ceos)
FIGURE 4. Simple view of ODC components for application services
FIGURE 5. KOMPSAT data application procedure in Open Data Cube
FIGURE 7. (a) Measurement listing result of KOMPSAT ingestion, (b) RGB compositing of KOMPSAT images in ODC
FIGURE 6. (a) YAML result of defining product, (b) Python module for indexing configuration of KOMPSAT optical images and (c) YAML result of ingesting data
FIGURE 8. Example of ODC application case with data search modes and analytical functions (excerpted from http://ec2-52-201-154-0.compute-1.amazonaws.com/)
TABLE 1. Comparison of ODC and GEE
References
- Ali, I., V. Naeimi, S. Cao, S. Elefante, T. S. Le, B. Bauer-Marschallinger and W. Wagner. 2017. Sentinel-1 Data Cube Exploitation: Tools, Products, Services and Quality Control. in the Proc. of the 2017 conference on Big Data from Space in Toulouse, France, 28 Nov.
- Brooke, B., L. Lymburner and A. Lewis. 2017. Coastal dynamics of Northern Australia - Insights from the Landsat Data Cube. Remote Sensing Applications: Society and Environment 8:94-98. https://doi.org/10.1016/j.rsase.2017.08.003
- Dwyer, J.L., D.P. Roy, B. Sauer, C.B. Jenkerson, H.K. Zhang and L. Lymburner. 2018. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sensing 10:1363.
- GEO Data Sharing Working Group. 2014. White Paper: Mechanisms to Share Data as Part of GEOSS Data-CORE, https://www.earthobservations.org/documents/dsp/draft_white_paper_geoss_legal_interoperability_30_october_2011.pdf (Accessed on Jan. 27, 2019).
- Giuliania, G., B. Chatenoux, A. De Bono, D. Rodila, J.-P. Richard, K. Allenbach, H. Dao and P. Peduzzi. 2017. Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube(SDC) on generating Analysis Ready Data(ARD). Big Earth Data, 1(1-2):100-117. https://doi.org/10.1080/20964471.2017.1398903
- Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau and R. Moore. 2017. Google Earth Engine: Planetary -scale geospatial analysis for everyone. Remote Sensing of Environment 202:18-27. https://doi.org/10.1016/j.rse.2017.06.031
- Guo, H., L. Wang and D. Liang. 2016. Big Earth Data from space: a new engine for Earth science. Science Bulletin 61(7):505-513. https://doi.org/10.1007/s11434-016-1041-y
- Hu, F., M. Xu, J. Yang, Y. Liang, K. Cui, M.M. Little, C.S. Lynnes, D.Q. Duffy and C. Yang. 2018. Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data. ISPRS International Journal of Geo-Information 7:144. https://doi.org/10.3390/ijgi7040144
- Lewis, A., L. Lymburner, M.B.J. Purss, B. Brooke, B. Evans, A. Ip, A.G. Dekker, J.R. Irons, S. Minchin, N. Mueller, S. Oliver, D. Roberts, B. Ryan, M. Thankappan, R. Woodcock, and L. Wyborn. 2016. Rapid, high-resolution detection of environmental change over continental scales from satellite data - the Earth Observation Data Cube. International Journal of Digital Earth 9: 106-111. https://doi.org/10.1080/17538947.2015.1111952
- Lewis, A., S. Oliver, L. Lymburner, B. Evans, L. Wybornb, N. Mueller, G. Raevksi, J. Hooke, R. Woodcock, J. Sixsmith, W. Wu, P. Tan, F. Li, B. Killough, S. Minchin, D. Roberts, D. Ayers, B. Bala, J. Dwyer, A. Dekker, T. Dhu, A. Hicks, A. Ip, M. Purss, C. Richards, S. Sagar, C. Trenham, P. Wang, and L.-W. Wang. 2017. The Australian Geoscience Data Cube - Foundations and lessons learned. Remote Sensing of Environment 202:276-292. https://doi.org/10.1016/j.rse.2017.03.015
- Liu, Q., 2018. Asia-Oceania GEOSS Task 10/11 - Update on data sharing and data cubes. Presentation material in 11th GEOSS Asia-Pacific Symposium in Kyoto, Japan, 24 Oct.
- Killough, B., 2018a. Overview of the Open Data Cube Initiative, in Proc. of the IGARSS 2018 in Valencia, Spain, 27 July.
- Killough, B., 2018b. Open Data Cubes Cloud Services Experiences and Lessons Learned, Presentation material in Future Data Architectures Big Data Workshop in Sao Jose dos Campos Brazil, April 26.
- Klein, T., M. Nilsson, M.A. Persson, and B. Hakansson. 2017. From Open Data to Open Analyses-New Opportunities for Environmental Applications?. Environments 4:32:1-17. https://doi.org/10.20448/journal.505.2017.41.1.8
- Nativi, S., P. Mazzetti, M. Santoro, F. Papeschi, M. Craglia and O. Ochiai. 2015. Big Data challenges in building the Global Earth Observation System of Systems. Environmental Modelling & Software 68:1-26. https://doi.org/10.1016/j.envsoft.2015.01.017
- Nativi, S., P. Mazzetti and M. Craglia. 2017. A view-based model of data-cube to support big earth data systems interoperability. Big Earth Data, 1:75-99. https://doi.org/10.1080/20964471.2017.1404232
- Pachon, I., S. Ramirez, D. Fonseca, P. Lozano-Rivera, C. Ariza, M. P. Mancipe, M. Villamizar, H. Castro, E. Cabrera, and M.T. Becerra. 2018. Random Forest Data Cube based Algorithm for Land Cover Classification: A Colombian Case. in the Proc. of the IGARSS 2018, in Valencia, Spain, 27 July.
- Rizvi, S. R., B. Killough, A. Cherry and S. Gowda. 2018. Lessons Learned and cost Analysis of hosting a Full Stack Open Data Cube(ODC) Application on the Amazon Web service(AWS). in the Proc. of the IGARSS 2018, in Valencia, Spain, 27 July.
- Soille, P., A. Burger, D. De Marchi, P. Kempeneers, D. Rodriguez, V. Syrris and V. Vasilev. 2018. A versatile data-intensive computing platform for information retrieval from big geospatial data. Future Generation Computer Systems 81:30-40. https://doi.org/10.1016/j.future.2017.11.007
- STEPI. 2014. Plan for Service System Building and Platform Design for Utilization Promotion of Satellite Images 128pp.
- Strobl, P.P. Baumann, A. Lewis, Z. Szantoi, B. Killough, M. Purss, M. Craglia, S. Nativi, A. Held, and T. Dhu. 2017. The Six Faces of the Data Cube. in the Proc. of the 2017 conference on Big Data from Space in Toulouse, France, 28 Nov.
- Yang, C.Q. Huang, Z. Li, K. Liu, Kai and F. Hu. 2017. Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth 10:13-53. https://doi.org/10.1080/17538947.2016.1239771
Cited by
- RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증 vol.36, pp.2, 2020, https://doi.org/10.7780/kjrs.2020.36.2.1.6