DOI QR코드

DOI QR Code

Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation

가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향

  • Han, Hyun-Sung (Dep. of Automatic Facilities, Korea Polytechnics College Daegu Campus) ;
  • Kang, Chang-Yong (Dept. of Metallurgical Engineering, Pukyong National University)
  • 한현성 (한국폴리텍대학 대구캠퍼스 산업설비학과) ;
  • 강창룡 (부경대학교 금속공학과)
  • Received : 2018.12.11
  • Accepted : 2019.01.09
  • Published : 2019.03.27

Abstract

This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

Keywords

References

  1. V. V. Bilzuk, N. I. Glavatska, O. Soderberg and V. K. Lindroos, Mater. Sci. Eng., A, 338, 213 (2002). https://doi.org/10.1016/S0921-5093(02)00060-6
  2. J. H. Jun, T. J. Ha and C. S. Choi, Scripta Mater., 43, 603 (2000). https://doi.org/10.1016/S1359-6462(00)00444-9
  3. H. Sahashi, I. S. Kim, C. Y. Kang, N. Igata and K. Miyahara, Kinzoku, 74, 250 (2004).
  4. S. H. Bzik, Nucl. Eng. Des., 198, 241 (2002). https://doi.org/10.1016/S0029-5493(99)00268-X
  5. T. H. Hwang and C. Y. Kang, Korean J. Met. Mater., 50, 645 (2013). https://doi.org/10.3365/kjmm.2012.50.9.645
  6. Y. H. Kim, Y. S. Ahn, H. Y. Jeong, C. Y. Kang, B. H. Jeong and C. G. Kim, Korean J. Met. Mater., 33, 42 (1995).
  7. Y. H. Kim, Y. S. Ahn, H. Y. Jeong, C. Y. Kang, B. H. Jeong and C. Y. Kim, Korean J. Met. Mater., 33, 1431 (1995).
  8. M. G. Kwoon and C. Y. Kang, The J. of the Korean Soc. for Power Syst. Eng., 18, 100(2014). https://doi.org/10.9726/kspse.2014.18.3.100
  9. D. W. Soon, J. W. Kim, I. S. Kim, K. Miyahara, J. H. Sung and C. Y. Kang, Korean J. Met. Mater., 42, 8, 621(2004).
  10. S. K. Huang, N. Li, Y. H. Wen, J. Teng, S. Ding and Y. G. Xu, Mater. Sci. Eng., A, 479, 223 (2008). https://doi.org/10.1016/j.msea.2007.06.063
  11. R. L. Miller, Trans. ASM, 57, 892 (1964).
  12. D. Birchon, D. E. Bromiey and D. Healey, Mater. Sci. Jounal, 2, 41 6(1968).
  13. G. H. Kim, Y. Nishimuro, Y. Watanabe, H. Sato, Y. Nishino, H. R. Jung, C. Y. Kang and I. S. Kim, Mater. Sci. Eng., A, 521, 368 (2009).
  14. J. S. Kim, J. N. Kim and C. Y. Kang, Korean J. Met. Mater., 56, 265 (2018). https://doi.org/10.3365/KJMM.2018.56.4.265
  15. J. Y. Lee, J. N. Kim and C. Y. Kang, Korean J. Met. Mater., 53, 919 (2015). https://doi.org/10.3365/KJMM.2015.53.12.919
  16. H. Okada, H. Shahashi, N. Igeta and K. Miyahara, J. Alloys Compd., 355, 17 (2003). https://doi.org/10.1016/S0925-8388(03)00251-2
  17. H. Okada, H. Shahashi, I. S. Kim, C. Y. Kang, N. Igeta and K. Miyahara, Mater. Sci. Eng., A, 370, 519 (2004). https://doi.org/10.1016/j.msea.2003.08.097
  18. K. S. Jeong, D. H. Kim, S. D. Kweon and C. Y. Kang, Kotran J. Mat. Res., 26. 129 (2018).