Fig. 1. Two kinds of explants used throughout this experiment. A: explant with cotyledonary nodes, B: half-split cotyledon originated from germinated Pisum sativum cv. ‘Sparkle’.
Fig. 2. Shoot regeneration from half-split cotyledon explant of pea cv. ‘Sparkle’cultured on the basal MS + B5 vitamin and 2 ㎎/L BA combined with 1 ㎎/L TDZ after 45 days. A: above site, B: below site.
Fig. 3. Shoot regeneration by pretreatment with BA onto explants in half-split cotyledon (A, B) and cotyledonary node explant (C, D). Explants were pretreated with 200 mg/L BA for 1 min on the basal MS with B5 vitamin and 2 ㎎/L BA (A, C) or not (B, D) in 21 days.
Fig. 4. Number of shoots per explants by different types of explants (half-split cotyledon or coteledonary node) and pretreatment onto explants. Explants were pretreated with 200 ㎎/L BA for 1 min. on shoot induction solution containing BA 2 ㎎/L. †Within each sampling date, the results followed by the same letters are not significantly different according to DMRT (p ˂ 0.05).
Fig. 5. Histological analysis of the shoot induction process in Pisum sativum cv. ‘Sparkle’. The cotyledonary nodes were cultured for 0 to 21 days on the basal MS with B5 vitamin and 2 ㎎/L BA. A: 3-day, B: 6-day, C: 12-day, D: 18-day. Abbreviations; ap: apical meristem, cn: cotyledonary node, ep: epidermal cells, h: hypocotyl area, L1: leaf primodia, m: meristem cells, vb: vascular bundle, vc: vascular cambium.
Fig. 6. ISSR finger-prints generated using 13 primers from 30 accessions of Pisum sativum cv. ‘Sparkle’. Lane M: 100 bp DNA ladder marker, Lane M1-M3: mother plant, Lane1-10: regenerated plants. Arrows means positions of 4 polymorphic bands.
Fig. 6. Continued.
Table 1. Shoots induction under different concentrations of plant growth regulators in 21-day
Table 2. Thirteen ISSR primers and number of polymorphic bands amplified by each primers between regenerated plantlets and mother plants in pea cv. ‘Sparkle’
References
- Aftabi, M., A.T. Nagawo and F. Hassan. 2018. Improved protocol for Agrobacterium-mediated transformation of pea (Pisum sativum). Mol. Biol. 7(1), doi:10.4172/2168-9547.1000202
- Ai-Qurainy, F., M. Nadeem, S. Khan, S. Alansi, M. Tarroum, A.A. Al-Ameri, A.-R. Z. Gaafar and A. Alshameri. 2018. Rapid plant regeneration, validation of genetic integrity by ISSR markers and conservation of Reseda pentagyna an endemic plant growing in Saudi Arabia. Saudi J. Biol. Sci. 25:111-116. https://doi.org/10.1016/j.sjbs.2017.07.003
- Azade, L.K., A.S. Indieka, M.O. Adero, S. Kiboi and N.O. Amugune. 2016. In vitro regeneration of pigeon pea using leaf explants. Afr. Crop Sci. J. 24(2):191-201. https://doi.org/10.4314/acsj.v24i2.7
- Benson, E.E. 2000. Special symposium: In vitro plant recalcitrance: An introduction. In Vitro Cell Dev. Biol. Plant 36:141-148. https://doi.org/10.1007/s11627-000-0029-z
- Bohmer, P., B. Meyer and H.J. Jacobson. 1995. Thidiazuron induced high-frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep. 15(1-2):26-29. https://doi.org/10.1007/BF01690247
- Brown, D.C.W. and T.A. Thorpe. 1986. Plant regeneration by organogenesis: In Cell Culture and Somatic Cell Genetics of Plants, Vasil, I.K. (ed.), Academic Press, New York, USA. 3:49-65.
- Cao, X. and F.A. Hammerschlag. 2002. A two-step pretreatment significantly enchance shoot organogenesis from leaf explant from highbush blueberry cultivar bluecrop. Hort. Sci. 37(5): 819-821. https://doi.org/10.21273/HORTSCI.37.5.819
- Dibax, R., G.B. Alcantara, M.P. Machado, J.C.B. Filho and R.A. Oliveira. 2013. Protocol optimization and histological analysis of in vitro plant regeneration of RB92579 and RB93509 sugarcane cultivars. Ciencia Rural, Santa Maria 43(1):49-54.
- Fatima, N. and M. Anis. 2012. Role of growth regulators on in vitro regeneration and histological analysis in Indian ginseng (Withania somnifera L.) Dunal. Physiol. Mol. Biol. Plants 18(1):59-67. https://doi.org/10.1007/s12298-011-0099-x
- Goto, S., R.C. Thakur and K. Ishii. 1998. Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep. 18:193-197. https://doi.org/10.1007/s002990050555
- Huang, W.J., G.G. Ning, G.F. Liu and M.Z. Bao. 2009. Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. Biol. Plant. 53(1):159-163. https://doi.org/10.1007/s10535-009-0025-z
- Jackson, J.A. and S.L.A. Hobbs. 1990. Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell Dev. Biol. Plant 26:825-835.
- Kantayos, V. 2019. Characterization of plantlet regeneration and genetic transformation of legume plants. School of Plant Production Science, Ph.D. Thesis, Sunchon National Univ., Korea (in Korea).
- Kim, D-g., V. Kantayos, D.-K. Kim, H.-G. Park, H.-H. Kim, E.-S. Rha, S.-C. Lee and C.-H. Bae. 2016. Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Korean J. Plant Res. 29:143-153. https://doi.org/10.7732/kjpr.2016.29.1.143
- Klu, G.Y.P. 1996. Efforts to accelerate domestication of winged bean (Psophocarpus tetragonolobus (L.) DC.) by means of induced mutations and tissue culture. Thesis Dissertation of Department Laboratory of Plant Breeding, Wageningen University and Research. Netherlands.
- Mallo'n, R., R.O. Juan and M.L. Gonza'lez. 2010. In vitro propagation of the endangered plant Centaure aultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss. Org. Cult. 101:31-39. https://doi.org/10.1007/s11240-009-9659-y
- Mariappan, M., S.K. Thiruppathi and V.R. Mandali. 2016. Organogenesis and evaluation of genetic homogeneity through SCoT and ISSR markers in Heliteres idora L., a medicinally important tree. S. Afr. J. Bot. 106:204-210. https://doi.org/10.1016/j.sajb.2016.07.017
- Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Nayak, S., T. Kaur, S. Mohanty, G. Ghosh, R. Choudhury, L. Acharya and E. Subudhi. 2011. In vitro and ex vitro evaluation of long-term microparpagated turmeric as analyzed through cytophotometry, phytoconsituents, biochemical and molecular markers. Plant Growth Regul. 64:91-98. https://doi.org/10.1007/s10725-010-9541-2
- Nayak, S.A., S. Kumar, K. Satapathy, A. Moharana, B. Behera, D.P. Barik, L. Acharya, P.K. Mohapatra, P.K. Jenaand and S.K. Naik. 2012. In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol. Plant. 35(1):195-203. https://doi.org/10.1007/s11738-012-1063-2
- Raveendar, S., A. Premkumar, S. Sasikumar, S. Ignacimuthu and P. Agastian. 2009. Development of a rapid, highly efficient system of organogenesis in cowpea Vigna unguiculata (L.) Walp. S. Afri. J. Bot. 75:17-21. https://doi.org/10.1016/j.sajb.2008.05.009
- Reinhardt, D., E.-R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml and C. Kuhlemeier. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:255-260. https://doi.org/10.1038/nature02081
- Sainger, M., D. Chaudhary, S. Dahiya, R. Jaiwal and P.K. Jaiwal. 2015. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiol. Mol. Biol. Plants 21(4): 505-517. https://doi.org/10.1007/s12298-015-0315-1
- Schroeder, H.E., A.H. Schotz, T. Wardley-Richardson, D. Spencer and T.J.V. Higgins. 1993. Transformation and regeneration of two cultivar of pea (Pisum sativum). Mol. Biol. Gene Reg. 101:751-757.
- Shah, S.H., S. Ali, S.A. Jan, J. Din and G.M. Ali. 2015. Callus induction, in vitro shoot regeneration and hairy root formation by the the assessment of various plant growth regulators in tomato (Solanum lycopersicum Mill.). J. Ani. Plant Sci. 25(2):528-538.
- Swartz, H.J., R. Bors, F. Mohamed and S.K. Naess. 1990. The effect of in vitro pretreatments on subsequent shoot organogenesis from exicised Rubus and Malus leaves. Plant Cell Tiss. Org. Cult. 21:179-184. https://doi.org/10.1007/BF00033439
- Thomas, T.D. 2007. Pretreatment in thidiazuron improves the in vitro shoot induction from leaves in Curculigo orchioides Gaertn., an endangered medicinal plant. Acta Physiol. Plant. 29:455-461. https://doi.org/10.1007/s11738-007-0055-0
- Tie, M., Q. Luo, Y. Zhu and H. Li. 2013. Effect of 6-BA on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). J. Agr. Sci. 5(5), doi:10.5539/jas.v5n5p1
- Tran, T.H., T.V. Bui and T.Y. Feng. 2016. Role of plant growth regulators on shoot development of shoot apical meristems of banana genotypes. Acta Hort. 1114:211-218. https://doi.org/10.17660/actahortic.2016.1114.29
- Tzitzikas, E.N., M. Bergervoet, K. Raemakers, J-P. Vincken, A. Lammeren and R.G.F. Visser. 2004. Regeneration of pea (Pisum sativum L.) by a cyclic organogenic system. Plant Cell Rep. 23:453-460. https://doi.org/10.1007/s00299-004-0865-0
- Veltcheva, M., D. Svetleva and S. Petkova. 2003. In vitro cultivation and regeneration of bean (Phaseolus vulgaris L.). Biotechnol. Biotechnol. Equip. 17(1):50-58. https://doi.org/10.1080/13102818.2003.10819195
-
Wang, H., M. Li, Y. Yang, J. Dong and W. Jin. 2015. Histological and endogenous plant growth regulators changes associated with adventitious shoot regeneration from in vitro leaf explants of strawberry (Fragaria
${\times}$ ananassa cv. 'Honeoye'). Plant Cell Tiss. Organ Cult. 23(3):479-488. - Werner, E.T., T.C.B. Soares, A.B.P.L. Gontijo, J.D. Souza Neto and J.A.T. Amaral. 2015. Genetic stability of micropropagated plants of Crambe abyssinica Hochst using ISSR markers. Gene Mol. Res. 14 (4):16450-16460. https://doi.org/10.4238/2015.December.9.16
- Woo, S.M. and H.Y. Wetzstein. 2008. Morphological and histological evaluations of in vitro regeneration in Elliottia racemosa leaf explants induced on media with thidiazuron. J. Am. Soc. Hort. Sci. 133(2):167-172. https://doi.org/10.21273/JASHS.133.2.167
- Yancheva, S., D. Svetleva, Sp. Petkova and A. Atanassov. 1999. Regeneration possibilities of Bulgarian bean cultivars Plovdiv 11M and Dobrudjanski 7. Biotechnol. Biotechnol. Equip. 13(1):40-43. https://doi.org/10.1080/13102818.1999.10819015
- Yi, J-Y., K. Balaraju, H.-J. Baek, M.-S. Yoon, H.-H. Kim and Y.-Y Lee. 2018. Cryopreservation of Citrus limon (L.) Burm. F shoot tips using a droplet-vitrification method. Korean J. Plant Res. 31(6):684-694. https://doi.org/10.7732/kjpr.2018.31.6.684
- Zhihui, S., M. Tzitzikas, K. Raemakers, M. Zhengqiang and R. Visser. 2009. Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev. Biol. Plant 45(6):776-782. https://doi.org/10.1007/s11627-009-9212-z
Cited by
- Optimized Shoot Induction and Histological Study of in vitro Cultured Korean Soybean Cultivars vol.32, pp.3, 2019, https://doi.org/10.7732/kjpr.2019.32.3.237