DOI QR코드

DOI QR Code

Investigation of influence of temperature and solid retention time on membrane fouling in MBR

  • Mirzavandi, Atoosa (Faculty of Chemical Engineering, Sahand University of Technology) ;
  • Hazrati, Hossein (Faculty of Chemical Engineering, Sahand University of Technology) ;
  • Ebrahimi, Sirous (Faculty of Chemical Engineering, Sahand University of Technology)
  • Received : 2018.08.23
  • Accepted : 2019.02.20
  • Published : 2019.03.25

Abstract

This study aimed to investigate the effect of temperature and solid retention time (SRT) on membrane fouling in a membrane bioreactors (MBRs). For this purpose, a lab-scale submerged MBR system was used. This system operated at two SRTs of 15 and 5 days, three various temperatures (20, 25 and $30^{\circ}C$) and hydraulic retention time (HRT) of 8 h. The results indicated that decreased the cake layer resistance and increased particles size of foulant due to increasing temperature and SRT. Fourier transform infrared (FTIR) analysis show that the cake layer formed on the membrane surface, contained high levels of proteins and especially polysaccharides in extracellular polymeric substances (EPS) but absorbance intensity of EPS functional groups decreased with temperature and SRT. EEM analysis showed that the peak on the range of Ex/Em=220-240/350-400 in SRT of 15 and temperature of $30^{\circ}C$ indicates the presence of fulvic acid in the cake. In addition, as the temperature rise from 20 to $30^{\circ}C$, concentration of soluble microbial products (SMP) increased and COD removal reached 89%. Furthermore, the rate of membrane fouling was found to increase with decreasing temperature and SRT.

Keywords

References

  1. Abdoli, S.M., Shafiei, S., Raoof, A., Ebadi, A., Jafarzadeh, Y. and Aslannejad, H. (2018), "Water flux reduction in microfiltration membranes: A pore network study", Chem. Eng. Technol., 41(8), 1566-1576. https://doi.org/10.1002/ceat.201800130
  2. American Public Health Association (APHA) and American Water Works Association (AWWA) (1989), Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, U.S.A.
  3. Arevalo, J., Ruiz, L., Perez, J. and Gomez, M. (2014), "Effect of temperature on membrane bioreactor performance working with high hydraulic and sludge retention time", Biochem. Eng. J., 88, 42-49. https://doi.org/10.1016/j.bej.2014.03.006
  4. Chen, J., Zhang, M., Li, F., Qian, L., Lin, H., Yang, L., Wu, X., Zhou, X., He, Y. and Liao, B.-Q. (2016), "Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism", Water Res., 102, 82-89. https://doi.org/10.1016/j.watres.2016.06.028
  5. Faust, L., Temmink, H., Zwijnenburg, A., Kemperman, A. and Rijnaarts, H. (2014), "High loaded MBRs for organic matter recovery from sewage: Effect of solids retention time on bioflocculation and on the role of extracellular polymers", Water Res., 56, 258-266. https://doi.org/10.1016/j.watres.2014.03.006
  6. Gao, W., Qu, X., Leung, K. and Liao, B. (2012), "Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor", J. Membrane Sci., 421, 131-144. https://doi.org/10.1016/j.memsci.2012.07.003
  7. Gil, J.A., Tua, L., Rueda, A.C., Rodriguez, M. and Prats, D. (2010), "Influence of temperature variations on the cake resistance and EPS of MBR mixed liquor fractions", Desalination Water Treat., 18 (1-3), 1-11. https://doi.org/10.5004/dwt.2010.1225
  8. Hazrati, H., Jahanbakhshi, N. and Rostamizadeh, M. (2018), "Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents", J. Membr. Sci., 555, 455-462. https://doi.org/10.1016/j.memsci.2018.03.076
  9. Hazrati, H., Moghaddam, A.H. and Rostamizadeh, M. (2017), "The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling", J. Environ. Chem. Eng., 5(3), 3005-3013. https://doi.org/10.1016/j.jece.2017.05.050
  10. Hazrati, H. and Shayegan, J. (2016), "Influence of suspended carrier on membrane fouling and biological removal of styrene and ethylbenzene in MBR", J. Taiwan Institute Chem. Eng., 64, 59-68. https://doi.org/10.1016/j.jtice.2015.12.002
  11. Hazrati, H., Shayegan, J. and Mojtaba Seyedi, S. (2016), "The effect of HRT and carriers on the sludge specifications in MBR to remove VOCs from petrochemical wastewater", Desalination Water Treat., 57(46), 21730-21742. https://doi.org/10.1080/19443994.2015.1125800
  12. Huang, Z., Ong, S.L. and Ng, H.Y. (2011), "Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling", Water Res., 45(2), 705-713. https://doi.org/10.1016/j.watres.2010.08.035
  13. Kertesz, S. (2014), "Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration", Membr. Water Treat., 5(2), 73-86. https://doi.org/10.12989/mwt.2014.5.2.073
  14. Lin, H., Xie, K., Mahendran, B., Bagley, D., Leung, K., Liss, S. and Liao, B. (2009), "Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs)", Water Res., 43(15), 3827-3837. https://doi.org/10.1016/j.watres.2009.05.025
  15. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J. and Gao, W. (2014), "A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies", J. Membr. Sci., 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034
  16. Ma, Z., Wen, X., Zhao, F., Xia, Y., Huang, X., Waite, D. and Guan, J. (2013), "Effect of temperature variation on membrane fouling and microbial community structure in membrane bioreactor", Bioresour. Technol., 133, 462-468. https://doi.org/10.1016/j.biortech.2013.01.023
  17. Nam, A., Kweon, J., Ryu, J., Lade, H. and Lee, C. (2015), "Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment", Membr. Water Treat., 6(3), 189-203. https://doi.org/10.12989/mwt.2015.6.3.189
  18. Park, H.D., Chang, I.S. and Lee, K.J. (2015), Principles of Membrane Bioreactors for Wastewater Treatment, CRC Press, Florida, U.S.A.
  19. Qu, X., Cai, X., Zhang, M., Lin, H., Leihong, Z. and Liao, B.-Q. (2018), "A facile method for simulating randomly rough membrane surface associated with interface behaviors", Appl. Surface Sci., 427, 915-921. https://doi.org/10.1016/j.apsusc.2017.08.013
  20. Silva, A.F., Antunes, S., Saunders, A., Freitas, F., Vieira, A., Galinha, C.F., Nielsen, P.H., Crespo, M.T.B. and Carvalho, G. (2016), "Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor", Appl. Microbiol. Biotechnol., 100(19), 8507-8521. https://doi.org/10.1007/s00253-016-7617-2
  21. Teng, J., Shen, L., He, Y., Liao, B.-Q., Wu, G. and Lin, H. (2018a), "Novel insights into membrane fouling in a membrane bioreactor: Elucidating interfacial interactions with real membrane surface", Chemosphere, 210, 769-778. https://doi.org/10.1016/j.chemosphere.2018.07.086
  22. Teng, J., Shen, L., Yu, G., Wang, F., Li, F., Zhou, X., He, Y. and Lin, H. (2018b), "Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor", Bioresour. Technol., 257, 39-46. https://doi.org/10.1016/j.biortech.2018.02.067
  23. Teng, J., Zhang, M., Leung, K.-T., Chen, J., Hong, H., Lin, H. and Liao, B.-Q. (2019), "A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor", Water Res., 149, 477-487. https://doi.org/10.1016/j.watres.2018.11.043
  24. Tseng, L., Gori, R. and Rosso, D. (2015), "Effects of activated sludge process conditions on the production of extracellular polymeric substances: results of yearlong monitoring in a warm climate", Environ. Eng. Sci., 32(7), 582-592. https://doi.org/10.1089/ees.2014.0523
  25. van den Brink, P., Satpradit, O.-A., van Bentem, A., Zwijnenburg, A., Temmink, H. and van Loosdrecht, M. (2011), "Effect of temperature shocks on membrane fouling in membrane bioreactors", Water Res., 45(15), 4491-4500. https://doi.org/10.1016/j.watres.2011.05.046
  26. van den Broeck, R., Van Dierdonck, J., Nijskens, P., Dotremont, C., Krzeminski, P., van der Graaf, J.H.J.M., van Lier, J.B., Van Impe, J.F.M. and Smets, I.Y. (2012), "The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)", J. Membr. Sci., 401-402, 48-55. https://doi.org/10.1016/j.memsci.2012.01.028
  27. Wang, Z., Wu, Z. and Tang, S. (2009), "Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor", Water Res., 43(9), 2504-2512. https://doi.org/10.1016/j.watres.2009.02.026
  28. Wang, Z., Wu, Z. and Tang, S. (2010), "Impact of temperature seasonal change on sludge characteristics and membrane fouling in a submerged membrane bioreactor", Separation Sci. Technol., 45(7), 920-927. https://doi.org/10.1080/01496391003656974
  29. Waterborg, J.H. (2002), The Lowry Method for Protein Quantitation, The Protein Protocols Handbook, Springer, Berlin, Germany.
  30. Zhang, M., Hong, H., Lin, H., Shen, L., Yu, H., Ma, G., Chen, J. and Liao, B.-Q. (2018), "Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations", Water Res., 129, 337-346. https://doi.org/10.1016/j.watres.2017.11.034
  31. Zhang, X., Wang, Z., Wu, Z., Wei, T., Lu, F., Tong, J. and Mai, S. (2011), "Membrane fouling in an anaerobic dynamic membrane bioreactor (AnDMBR) for municipal wastewater treatment: Characteristics of membrane foulants and bulk sludge", Process Biochem., 46(8), 1538-1544. https://doi.org/10.1016/j.procbio.2011.04.002
  32. Zhou, Z., Meng, F., Chae, S.-R., Huang, G., Fu, W., Jia, X., Li, S. and Chen, G.-H. (2012), "Microbial transformation of biomacromolecules in a membrane bioreactor: Implications for membrane fouling investigation", PloS one, 7(8), e42270. https://doi.org/10.1371/journal.pone.0042270
  33. Zonoozi, M.H., Moghaddam, M.A. and Maknoon, R. (2015), "Operation of integrated sequencing batch membrane bioreactor treating dye-containing wastewater at different SRTs: Study of overall performance and fouling behavior", Environ. Sci. Pollut. Res., 22(8), 5931-5942. https://doi.org/10.1007/s11356-014-3761-3
  34. Zuriaga-Agusti, E., Bes-Pia, A., Mendoza-Roca, J. and Alonso-Molina, J. (2013), "Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination", Separation Purif. Technol., 112, 1-10. https://doi.org/10.1016/j.seppur.2013.03.048

Cited by

  1. Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study vol.11, pp.2, 2019, https://doi.org/10.12989/mwt.2020.11.2.159