DOI QR코드

DOI QR Code

Characterization of Ecological Networks on Wetland Complexes by Dispersal Models

분산 모형에 따른 습지경관의 생태 네트워크 특성 분석

  • Kim, Bin (Environmental and Ecological Complex Systems Lab, School of Urban and Civil Engineering, Hongik University) ;
  • Park, Jeryang (Environmental and Ecological Complex Systems Lab, School of Urban and Civil Engineering, Hongik University)
  • 김빈 (홍익대학교 건설도시공학부) ;
  • 박제량 (홍익대학교 건설도시공학부)
  • Received : 2019.01.11
  • Accepted : 2019.02.08
  • Published : 2019.02.28

Abstract

Wetlands that provide diverse ecosystem services, such as habitat provision and hydrological control of flora and fauna, constitute ecosystems through interaction between wetlands existing in a wetlandscape. Therefore, to evaluate the wetland functions such as resilience, it is necessary to analyze the ecological connectivity that is formed between wetlands which also show hydrologically dynamic behaviors. In this study, by defining wetlands as ecological nodes, we generated ecological networks through the connection of wetlands according to the dispersal model of wetland species. The characteristics of these networks were then analyzed using various network metrics. In the case of the dispersal based on a threshold distance, while a high local clustering is observed compared to the exponential dispersal kernel and heavy-tailed dispersal model, it showed a low efficiency in the movement between wetlands. On the other hand, in the case of the stochastic dispersion model, a low local clustering with high efficiency in the movement was observed. Our results confirmed that the ecological network characteristics are completely different depending on which dispersal model is chosen, and one should be careful on selecting the appropriate model for identifying network properties which highly affect the interpretation of network structure and function.

동식물의 서식지 제공 및 수문학적 조절 등 다양한 생태계 서비스를 제공하는 습지는 경관 내 습지간의 상호작용을 통해 생태계를 구성한다. 따라서 습지경관에서의 생태계의 리질리언스 등의 기능을 평가하기 위해서는 습지의 동역학적 특성과 더불어 습지간에 형성되는 생태적 연결성 분석이 필요하다. 본 연구에서는 습지를 생태학적 노드로 정의하여 습지 서식종의 분산 모형에 따라 발생하는 습지간 연결을 통해 생태 네트워크를 생성하고 네트워크 분석 방법을 통해 생태 네트워크의 특성을 비교, 분석하였다. 임계거리를 활용한 분산모델 (threshold distance)의 경우 확률적인 분산모델(exponential dispersal kernel, heavy-tailed dispersal model)과 비교하여 국지적인 군집화가 높으나 습지 간의 이동에는 비효율적인 것으로 나타났다. 반면 확률적 분산모델의 경우 국지적인 군집화는 낮게 나타나나 습지 경관 내에서의 이동은 효율적인 것으로 나타남에 따라 분산 모델에 따른 생태 네트워크 특성에 차이가 발생함을 확인하였다. 본 연구는 향후 습지경관 리질리언스 분석을 위한 생태 네트워크 구축의 기초자료로 활용될 수 있을 것으로 사료된다.

Keywords

HKSJBV_2019_v21n1_16_f0001.png 이미지

Fig. 1. Map of study area with wetlands in prairie pothole region, Deuel county (dotted line) and Big Sioux Basin of ecoregion (red solid line), South Dakota (solid line). Polygon indicates geographically isolated wetlands.

HKSJBV_2019_v21n1_16_f0002.png 이미지

Fig. 2. Calculating distances between a pair of wetlands. Polygons are the shape of real wetlands while circles are transformed wetlands

HKSJBV_2019_v21n1_16_f0003.png 이미지

Fig. 3. Generating ecological networks using threshold distance model (a: 1 km, b: 2 km, c: 3 km)

HKSJBV_2019_v21n1_16_f0004.png 이미지

Fig. 4. Generating ecological networks using exponential dispersal kernel(a: 0.6 km, b: 1.2 km, c: 1.8 km mean distance)

HKSJBV_2019_v21n1_16_f0005.png 이미지

Fig. 5. Generating ecological networks using heavy-tailed dispersal model(a: β = 2, b: β = 3, c: β = 3)

HKSJBV_2019_v21n1_16_f0006.png 이미지

Fig. 6. Spatial distribution of node degrees in the ecological network generated by threshold distance model (a: 1km, b: 2km, c: 3km)

HKSJBV_2019_v21n1_16_f0007.png 이미지

Fig. 7. Spatial distribution of node degrees in the ecological network generated by exponential dispersal kernel (a: 0.6km, b: 1.2km, c: 1.8km mean distance)

HKSJBV_2019_v21n1_16_f0008.png 이미지

Fig. 8. Spatial distribution of node degrees in the ecological network generated by heavy-tailed dispersal model (a: β =2, b: β = 2.5, c: β = 3)

Table 1. Metric values of ecological networks by dispersal models

HKSJBV_2019_v21n1_16_t0001.png 이미지

Table 2. Correlation coefficients of the degrees between ecological network models

HKSJBV_2019_v21n1_16_t0002.png 이미지

References

  1. Amezaga, J. M., L. Santamaria, and a. J. Green. 2002. "Biotic Wetland Connectivity - Supporting a New Approach for Wetland Policy." Acta Oecologica 23 (3):213-22. https://doi.org/10.1016/S1146-609X(02)01152-9.
  2. Bartumeus, Frederic. 2007. "Levy Processes in Animal Movement: An Evolutionary Hypothesis." Fractals 15 (2). World Scientific:151-62. https://doi.org/10.1142/S0218348X07003460
  3. Bishop-Taylor, Robbi, Mirela G Tulbure, and Mark Broich. 2015. "Surface Water Network Structure, Landscape Resistance to Movement and Flooding Vital for Maintaining Ecological Connectivity across Australia's Largest River Basin." Landscape Ecology 30 (10). Springer:2045-65. https://doi.org/10.1007/s10980-015-0230-4
  4. Boccaletti, Stefano, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. 2006. "Complex Networks: Structure and Dynamics." Physics Reports 424 (4-5):175-308. https://doi.org/10.1016/j.physrep.2005.10.009.
  5. Bryce, Sandra A. 1998. "Ecoregions of North Dakota and South Dakota." Northern Prairie Wildlife Research Center.
  6. Bunn, a G, D L Urban, and T H Keitt. 2000. "Landscape Connectivity: A Conservation Application of Graph Theory." J. of Environmental Management 59 (4):265-78. https://doi.org/10.1006/jema.2000.0373.
  7. Cui, Baoshan, Zhiming Zhang, and Xiaoxia Lei. 2012. "Implementation of Diversified Ecological Networks to Strengthen Wetland Conservation." Clean - Soil, Air, Water 40 (10):1015-26. https://doi.org/10.1002/clen.201200026.
  8. Dahl, Thomas E. 2011. Status and Trends of Wetlands in the Conterminous United States 2004 to 2009. US Department of the Interior, US Fish and Wildlife Service, Fisheries and ….
  9. Estrada, Ernesto, and Orjan Bodin. 2008. "Using Network Centrality Measures to Manage Landscape Connectivity." Ecological Applications 18 (7). Wiley Online Library:1810-25. https://doi.org/10.1890/07-1419.1
  10. Fath, Brian D., Ursula M. Scharler, Robert E. Ulanowicz, and Bruce Hannon. 2007. "Ecological Network Analysis: Network Construction." Ecological Modelling 208 (1):49-55. https://doi.org/10.1016/j.ecolmodel.2007.04.029.
  11. Fortuna, Miguel a, Carola Gomez-Rodriguez, and Jordi Bascompte. 2006. "Spatial Network Structure and Amphibian Persistence in Stochastic Environments." Proceedings. Biological Sciences / The Royal Society 273 (1592):1429-34. https://doi.org/10.1098/rspb.2005.3448.
  12. Haig, Susan M., David W. Mehlman, and Lewis W. Oring. 1998. "Avian Movements and Wetland Connectivity in Landscape Conservation." Conservation Biology 12 (4):749-58. https://doi.org/10.1046/j.1523-1739.1998.97102.x.
  13. Hollis, G. E. 1990. "Environmental Impacts of Development on Wetlands in Arid and Semi-Arid Lands." Hydrological Sciences Journal 35 (4):411-28. https://doi.org/10.1080/02626669009492443.
  14. Irwin, Michael D., and Holly L. Hughes. 1992. "Centrality and the Structure of Urban Interaction: Measures, Concepts, and Applications." Social Forces. https://doi.org/10.1093/sf/71.1.17.
  15. Janssen, Marco a, Orjan Bodin, John M Anderies, Thomas Elmqvist, Henrik Ernstson, Ryan R J Mcallister, Per Olsson, and Paul Ryan. 2006. "Toward a Network Perspective of the Study of Resilience in Social-Ecological Systems." Ecology and 11 (1).
  16. Johnston, Carol A. 2013. "Wetland Losses due to Row Crop Expansion in the Dakota Prairie Pothole Region." Wetlands 33 (1). Springer:175-82. https://doi.org/10.1007/s13157-012-0365-x
  17. Junk, Wolfgang J, Shuqing An, C M Finlayson, Brij Gopal, Jan Kvet, Stephen A Mitchell, William J Mitsch, and Richard D Robarts. 2013. "Current State of Knowledge Regarding the World's Wetlands and Their Future under Global Climate Change: A Synthesis." Aquatic Sciences 75 (1). Springer:151-67. https://doi.org/10.1007/s00027-012-0278-z
  18. Latora, Vito, and Massimo Marchiori. 2007. "A Measure of Centrality Based on Network Efficiency." New J. of Physics 9 (6). IOP Publishing:188. https://doi.org/10.1088/1367-2630/9/6/188
  19. Levin, Simon A, * Helene C Muller-Landau, * Ran Nathan, and * Jerome Chave. 2003. "The Ecology and Evolution of Seed Dispersal: A Theoretical Perspective." Annual Review of Ecology, Evolution, and Systematics 34 (1). Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA:575-604. https://doi.org/10.1146/annurev.ecolsys.34.011802.132428
  20. Logan, From, E M Karlsson, H E Gall, J Park, N Emery, P Owens, D Niyogi, P S C Rao, Academic Press, and Academic Press. 2013. "Freshwater Wetlands: Balancing Food and Water Security with Resilience of Ecological and Social Systems," 105-16.
  21. McIntyre, Nancy E., and Richard E. Strauss. 2013. "A New, Multi-Scaled Graph Visualization Approach: An Example within the Playa Wetland Network of the Great Plains." Landscape Ecology 28 (4):769-82. https://doi.org/10.1007/s10980-013-9862-4.
  22. Minor, Emily S., and Dean L. Urban. 2008. "A Graph-Theory Framework for Evaluating Landscape Connectivity and Conservation Planning." Conservation Biology 22 (2):297-307. https://doi.org/10.1111/j.1523-1739.2007.00871.x.
  23. Mitsch, W. J., and J. G. Gossilink. 2000. "The Value of Wetlands: Importance of Scale and Landscape Setting." Ecological Economics 35 (1):25-33. https://doi.org/10.1016/S0921-8009(00)00165-8.
  24. Moilanen, Atte, and Marko Nieminen. 2002. "Simple Connectivity Measures in Spatial Ecology." Ecology 83 (4):1131-45. https://doi.org/doi:10.1890/0012-9658(2002)083[1131:SCMISE]2.0.CO;2.
  25. Nathan, Ran, E K Klein, Juan J Robledo-Arnuncio, and Eloy Revilla. 2012. "Dispersal Kernels." In Dispersal Ecology and Evolution, 187-210. Oxford University Press Oxford.
  26. Newman, M. E. J. 2003. "The Structure and Function of Complex Networks." Evolution of Networks: From Biological Nets to the Internet and WWW, 167-256. https://doi.org/10.1137/S003614450342480.
  27. O'Farrill, Georgina, Kim Gauthier Schampaert, Bronwyn Rayfield, Orjan Bodin, Sophie Calme, Raja Sengupta, and Andrew Gonzalez. 2014. "The Potential Connectivity of Waterhole Networks and the Effectiveness of a Protected Area under Various Drought Scenarios." PLoS ONE 9 (5). https://doi.org/10.1371/journal.pone.0095049.
  28. Omernik, James M, and Glenn E Griffith. 2014. "Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework." Environmental Management 54 (6). Springer:1249-66. https://doi.org/10.1007/s00267-014-0364-1
  29. Phillips, Jonathan D., Wolfgang Schwanghart, and Tobias Heckmann. 2015. "Graph Theory in the Geosciences." Earth-Science Reviews 143. Elsevier B.V.:147-60. https://doi.org/10.1016/j.earscirev.2015.02.002.
  30. Plank, M J, and A James. 2008. "Optimal Foraging: Levy Pattern or Process?" J. of The Royal Society Interface 5 (26). The Royal Society:1077-86. https://doi.org/10.1098/rsif.2008.0006
  31. Preisser, Evan L., Jennifer Yelin Kefer, Jessica D. Lawrence, and Tim W. Clark. 2000. "Vernal Pool Conservation in Connecticut: An Assessment and Recommendations." Environmental Management 26 (5):503-13. https://doi.org/10.1007/s002670010108.
  32. Reynolds, Andy M, and Christopher J Rhodes. 2009. "The Levy Flight Paradigm: Random Search Patterns and Mechanisms." Ecology 90 (4). Wiley Online Library:877-87. https://doi.org/10.1890/08-0153.1
  33. Rho, Paikho. 2013. "Development for Wetland Network Model in Nakdong Basin Using a Graph Theory" 15 (3):397-406. https://doi.org/10.17663/JWR.2013.15.3.397
  34. Ruiz, Luis, Niki Parikh, Lucas J. Heintzman, Steven D. Collins, Scott M. Starr, Christopher K. Wright, Geoffrey M. Henebry, Natasja van Gestel, and Nancy E. McIntyre. 2014. "Dynamic Connectivity of Temporary Wetlands in the Southern Great Plains." Landscape Ecology 29 (3):507-16. https://doi.org/10.1007/s10980-013-9980-z.
  35. Schick, Robert S, Scott R Loarie, Fernando Colchero, Benjamin D Best, Andre Boustany, Dalia A Conde, Patrick N Halpin, Lucas N Joppa, Catherine M McClellan, and James S Clark. 2008. "Understanding Movement Data and Movement Processes: Current and Emerging Directions." Ecology Letters 11 (12). Wiley Online Library:1338-50. https://doi.org/10.1111/j.1461-0248.2008.01249.x
  36. Sims, David W, David Righton, and Jonathan W Pitchford. 2007. "Minimizing Errors in Identifying Levy Flight Behaviour of Organisms." J. of Animal Ecology 76 (2). Wiley Online Library:222-29. https://doi.org/10.1111/j.1365-2656.2006.01208.x
  37. Sinsch, Ulrich. 1992. "Oecologia Structure and Dynamic of a Natterjack Toad Metapopulation ( Bufo Calamita )."
  38. Smith, M Alex, and David M Green. 2005. "Dispersal and the Metapopulation in Amphibian and Paradigm Ecology Are All Amphibian Conservation: Populations Metapopulations?" Ecography 28 (1):110-28. https://doi.org/10.1111/j.0906-7590.2005.04042.x.
  39. Thorslund, Josefin, Jerker Jarsjo, Fernando Jaramillo, James W Jawitz, Stefano Manzoni, Nandita B Basu, Sergey R Chalov, Matthew J Cohen, Irena F Creed, and Romain Goldenberg. 2017. "Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management." Ecological Engineering 108. Elsevier:489-97. https://doi.org/10.1016/j.ecoleng.2017.07.012
  40. Tulbure, Mirela G, Stuart Kininmonth, and Mark Broich. 2014. "Spatiotemporal Dynamics of Surface Water Networks across a Global Biodiversity Hotspot-implications for Conservation." Environmental Research Letters 9 (11). IOP Publishing:114012. https://doi.org/10.1088/1748-9326/9/11/114012
  41. Uden, Daniel R, Michelle L Hellman, David G Angeler, and Craig R Allen. 2014. "The Role of Reserves and Anthropogenic Habitats for Functional Connectivity and Resilience of Ephemeral Wetlands." Ecological Applications 24 (7). Wiley Online Library:1569-82. https://doi.org/10.1890/13-1755.1
  42. Urban, Dean, and Timothy Keitt. 2001. "Landscape Connectivity: A Graph‐theoretic Perspective." Ecology 82 (5). Wiley Online Library:1205-18. https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
  43. Viswanathan, Gandimohan M, Sergey V Buldyrev, Shlomo Havlin, M G E Da Luz, E P Raposo, and H Eugene Stanley. 1999. "Optimizing the Success of Random Searches." Nature 401 (6756). Nature Publishing Group:911. https://doi.org/10.1038/44831
  44. Watts, Duncan J, and Steven H Strogatz. 1998. "Collective Dynamics of 'small-World'networks." Nature 393 (6684). Nature Publishing Group:440-42. https://doi.org/10.1038/30918
  45. Whigham, Dennis F. 1999. "Ecological Issues Related to Wetland Preservation, Restoration, Creation and Assessment." Science of the Total Environment 240 (1-3):31-40. https://doi.org/10.1016/S0048-9697(99)00321-6.
  46. Williams, James D, and C Kenneth Dodd. 1978. "Importance of Wetlands To Endangered and Threatened Species," 565-76.
  47. Wright, Christopher K. 2010a. "Spatiotemporal Dynamics of Prairie Wetland Networks : Power-Law Scaling and Implications for Conservation Planning Spatiotemporal of Prairie Wetland Networks : Dynamics and Implications for Conservation Scaling Planning" 91 (7):1924-30. https://doi.org/10.1890/09-0865.1
  48. Wright, Christopher K. 2010b. "Spatiotemporal Dynamics of Prairie Wetland Networks: Power-Law Scaling and Implications for Conservation Planning." Ecology 91 (7):1924-30. https://doi.org/10.1890/09-0865.1.
  49. Zedler, Joy B. 2000. "Progress in Wetland Restoration Ecology." Trends in Ecology & Evolution 15 (10). Elsevier:402-7. https://doi.org/10.1016/S0169-5347(00)01959-5