DOI QR코드

DOI QR Code

Manufacturing and characterization of tufted preform with complex shape

  • 투고 : 2018.07.30
  • 심사 : 2018.10.11
  • 발행 : 2019.03.25

초록

An alternative to the multilayered preforming is to use structures reinforced through-the-thickness in order to manufacture thicker and more complex pieces. Stitching technology is developed to bind dry reinforcements together or to strengthen composites in thickness performance by inserting structural yarns. Tufting process represents the simplest one-sided sewing technology and it is specifically designed for dry preform/liquid composite molding process route. Currently, the tufting technology is getting more and more interest due to its simplest and efficient process where it involves the insertion of binder threads via a single needle through the fabric. This technique of reinforcement through-the-thickness requires only one access to the preform which makes it suitable for three-dimensional structures and complex shaped textile composites. This paper aims to improve the understanding of the mechanical performance of tufted structures. An experimental study was developed, which included tensile and bending behaviours of tufted and un-tufted preforms, in order to evaluate the effect of tufting on the mechanical performance of dry preforms. The influence of the process parameters (tufting density, loop length, tufting yarns${\ldots}$) on the mechanical performance ofthe final structure is also highlighted.

키워드

참고문헌

  1. Allaoui, S., Hivet, G., Soulat, D., Wendling, A., Ouagne, P. and Chatel, S. (2014), "Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement", Int. J. Mater. Form, 7(2), 155-165. https://doi.org/10.1007/s12289-012-1116-5
  2. Bilisik, K. (2011), "Bending behavior of multilayered and multidirectional stitched aramid woven fabric structures", Text. Res. J., 85(17), 1748-1761. https://doi.org/10.1177/0040517511411974
  3. Boisse, P., Aimene, Y., Dogui, A., Dridi, S., Gatouillat, S., Hamila, N., Khan, M.A., Mabrouki, T., Morestin, F. and Vidal-Salle, E. (2010), "Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming", Int. J. Mater. Form, 3(2), 1229-1240. https://doi.org/10.1007/s12289-009-0664-9
  4. Boisse, P., Gasser, A. and Hivet, G. (2001), "Analyses offabric tensile behaviour: Determination of the biaxial tension-strain surfaces and their use in forming simulations", Compos. Part A, 32(10), 1395-1414. https://doi.org/10.1016/S1359-835X(01)00039-2
  5. Boisse, P., Hamila, N., Vidal-Salle, E. and Dumont, F. (2011), "Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile in-plane shear and bending stiffnesses", Compos. Sci. Technol., 71(5), 683-692. https://doi.org/10.1016/j.compscitech.2011.01.011
  6. Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, HS., De Graaf, E.F., Gorczyca, J.L., Harrison, P., Hivet, G., Launay, J., Lee, W., Liu, L., Lomov, S.V., Long, A., de Luycker, E., Morestin, F., Padvoiskis, J., Peng, X.Q. and Zhu, B. (2008), "Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results", Compos. Part A, 39(6), 1037-1053. https://doi.org/10.1016/j.compositesa.2008.02.016
  7. Chehura, E., Dell'Anno, G., Huet, T., Staines, S., James, S.W., Partridge, I.K. and Tatam, R.P. (2014), "Online monitoring of multi-component strain development in a tufting needle using optical fibre Bragg grating sensors", Smart Mater. Struct., 23(7), 075001. https://doi.org/10.1088/0964-1726/23/7/075001
  8. Chen, X., Taylor, L.W. and Tsai, L.J. (2011), "An overview on fabrication of three-dimensional woven textile preforms for composites", Text. Res. J., 81(9), 932-944. https://doi.org/10.1177/0040517510392471
  9. Colman, A.G., Bridgens, B.N., Gosling, P.D., Jou, G.T. and Hsu, X.Y. (2014), "Shear behaviour of architectural fabrics subjected to biaxial tensile loads", Compos. Part A, 66, 163-174. https://doi.org/10.1016/j.compositesa.2014.07.015
  10. De Bilbao, E., Soulat, D., Hivet, G. and Gasser, A. (2010), "Experimental study of bending behaviour of reinforcements", Exp. Mech., Soc. Exp. Mech., 50(3), 333-335. https://doi.org/10.1007/s11340-009-9234-9
  11. De Verdiere, M.C., Pickett, A.K., Skordos, A.A. and Witzel, V. (2009), "Evaluation of the mechanical and damage behaviour of tufted non crimped fabric composites using full field measurements", Compos. Sci. Technol., 69(2), 131-138. https://doi.org/10.1016/j.compscitech.2008.08.025
  12. Dell'Anno, G., Cartie, D.D.R., Partridge, I.K. and Rezai, A. (2007), "Exploring mechanical property balance in tufted carbon fabric/epoxy composites", Compos. Part A, 38(11), 2366-2373. https://doi.org/10.1016/j.compositesa.2007.06.004
  13. Gnaba, I., Legrand, X., Wang, P. and Soulat, D. (2018), "Through-the-thickness reinforcement for composite structures: A review", J. Ind. Tex.
  14. Haanappel, S.P., Ten Thije, R.H.W., Sachs, U., Rietman, B. and Akkerman, R. (2014), "Formability analyses of uni-directional and textile reinforced thermoplastics", Compos. Part A, 56, 80-92. https://doi.org/10.1016/j.compositesa.2013.09.009
  15. Hamila, N. and Boisse, P. (2008), "Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element", Compos. Part B, 39, 999-1010. https://doi.org/10.1016/j.compositesb.2007.11.008
  16. Hartley, J.W., Kratz, J., Ward, C. and Partridge, I.K. (2016), "Effect of tufting density and loop length on the crushing behaviour of tufted sandwich specimens", Compos. Part B, 112, 49-56. https://doi.org/10.1016/j.compositesb.2016.12.037
  17. Henao, A., Carrera, M., Miravete, A. and Castejon, L. (2010), "Mechanical performance of throughthickness tufted sandwich structures", Compos. Struct., 92(9), 2052-2059. https://doi.org/10.1016/j.compstruct.2009.11.005
  18. Hivet, G., Vidal-Salle, E. and Boisse, P. (2013), "Analysis of the stress components in a textile composite reinforcement", J. Compos. Mater., 47(3), 269-285. https://doi.org/10.1177/0021998312439222
  19. Launay, J., Hivet, G., Duong, A.V. and Boisse, P. (2008), "Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements", Compos. Sci. Technol, 68(2), 506-515. https://doi.org/10.1016/j.compscitech.2007.06.021
  20. Liang, B., Hamila, N., Peillon, M. and Boisse, P. (2014), "Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations", Compos. Part A, 67, 111-122. https://doi.org/10.1016/j.compositesa.2014.08.020
  21. Liu, L., Wang, P., Legrand, X. and Soulat, D. (2017), "Investigation of mechanical properties of tufted composites: Influence of tuft length through the thickness", Compos. Struct., 172, 221-228. https://doi.org/10.1016/j.compstruct.2017.03.099
  22. Liu, L., Zhang, T., Wang, P., Legrand, X. and Soulat, D. (2015), "Influence of the tufting yarns on formability of tufted 3-Dimensional composite reinforcement", Compos. Part A, 78, 403-411. https://doi.org/10.1016/j.compositesa.2015.07.014
  23. Mouritz, A.P. and Cox, B.N. (2000), "A mechanistic approach to the properties of stitched laminates", Compos. Part A, 31(1), 1-2. https://doi.org/10.1016/S1359-835X(99)00056-1
  24. Mouritz, A.P. and Cox, B.N. (2010), "A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched and pinned composites", Compos. Part A, 41, 709-728. https://doi.org/10.1016/j.compositesa.2010.02.001
  25. Mouritz, A.P., Leong, K.H. and Herszberg, I. (1997), "A review of the effect of stitching on the in-plane mechanical properties of fibre reinforced polymer composites", Compos. Part A, 28(12), 979-991. https://doi.org/10.1016/S1359-835X(97)00057-2
  26. Mouritz, A.P., Bannister, M.K., Falzon, P.J. and Leong, K.H. (1999), "Review of applications for advanced three-dimensional fibre textile composites", Compos. Part A, 30(12), 1445-1461. https://doi.org/10.1016/S1359-835X(99)00034-2
  27. Nosrat-Nezami, F., Gereke, T., Eberdt. C. and Cherif, C. (2014), "Characterisation of the shear tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes", Compos. Part A, 67, 131-139. https://doi.org/10.1016/j.compositesa.2014.08.030
  28. Peng, X., Guo, Z., Diu, T. and Yu, W.R. (2013), "A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation", Compos. Part B, 52, 275-281. https://doi.org/10.1016/j.compositesb.2013.04.014
  29. Peres, P., Desmars, B. and Leard, J.P. (2007), "Composite behavior of assemblies with AEROTISS(R) 03S technology", 16th International Conference on Composite Materials, Kyoto, Japan, July.
  30. Preau, M., Treiber, J.W.G. and Partridge, I.K. (2011), "Comportement et endommagement d'un raidisseur carbone/epoxy renforce par tufting", 17 emes Journees Nationales Sur les Composites JNC17, Poitiers, France, June.
  31. Saboktakin, R.A. (2013), "Integrity assessment of preforms and thick textile reinforced composites for aerospace applications", Ph.D. Dissertation, Quebec University, Quebec.
  32. Sickinder, C. and Herrmann, A. (2001), "Structural stitching as a method to design high-performance composites in future", Proceedings TechTextil Symposium, Frankfurt, April.
  33. Syerko, E., Comas-Cardona, S. and Binetruy, C. (2012), "Models of mechanical properties/ behavior of dry fibrous materials at various scales in bending and tension: A review", Compos. Part A, 43(8), 1365-1388. https://doi.org/10.1016/j.compositesa.2012.03.012
  34. Treiber, J.W.G. (2011), "Performance of tufted carbon fibre/epoxy composites", Ph.D. Dissertation, Cranfield University, Cranfield.
  35. Zhu, B., Yu, T.X., Zhang, H. and Tao, X.M. (2011), "Experimental investigation of formability of commingled woven composite preform in stamping operation", Compos. Part B, 42, 289-295. https://doi.org/10.1016/j.compositesb.2010.05.006

피인용 문헌

  1. Investigation of the formability behaviour during stamping of tufted and un-tufted carbon preforms: towards localized reinforcement technologies vol.14, pp.6, 2019, https://doi.org/10.1007/s12289-020-01606-4
  2. Multi-material braids for multifunctional laminates: conductive through-thickness reinforcement vol.2, pp.1, 2019, https://doi.org/10.1186/s42252-021-00018-0