과제정보
연구 과제 주관 기관 : University of Technology of Troyes
참고문헌
- Abrate, S. (2005), Impact on Composite Structures, Cambridge University Press, Cambridge, United Kingdom.
- Akatay, A., Bora, M.O., Fidan, S. and Coban, O. (2018), "Damage characterization of three point bended honeycomb sandwich structures under different temperatures with cone beam computed tomography technique", Polym. Compos., 39(1), 46-54. https://doi.org/10.1002/pc.23900
- Aktay, L., Johnson, A.F. and Holzapfel, M. (2005), "Prediction of impact damage on sandwich composite panels", Comput. Mater. Sci., 32(3-4), 252-260. https://doi.org/10.1016/j.commatsci.2004.09.044
- Aktay, L., Johnson, A.F. and Kroplin, B.H. (2008), "Numerical modelling of honeycomb core crush behavior", Eng. Fracture Mech., 75(9), 2616-2630. https://doi.org/10.1016/j.engfracmech.2007.03.008
- Carus, M., Karst, S., Kauffmann, A., Hobson, J. and Bertucelli, S. (2013), "The European Hemp Industry: Cultivation, processing and applications for fibres, shivs and seeds", European Industrial Hemp Association (EIHA), Hurth (Germany). http://eiha.org/media/2014/10/13-06-european-hemp-industry.pdf.
- Chawla, A., Mukherjee, S., Kumar, D., Nakatani, T. and Ueno, M. (2003), "Prediction of crushing behaviour of honeycomb structures", J. Crashworthiness, 8(3), 229-235. https://doi.org/10.1533/ijcr.2003.0227
- Cunningham, P.R., White, R.G. and Aglietti, G.S. (2000), "The effects of various design parameters on the free vibration of doubly curved composite sandwich panels", J. Sound Vib., 230(3), 617-648. https://doi.org/10.1006/jsvi.1999.2632
- Gibson, L.J. and Ashby, M.F. (1999), Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom.
- Goldsmith, W., Wang, G.T., Li, K. and Crane, D. (1997), "Perforation of cellular sandwich plates", J. Impact Eng., 19(5-6), 361-379. https://doi.org/10.1016/S0734-743X(97)00003-1
- Herrmann, A.S., Zahlen, P.C. and Zuardy, I. (2005), "Sandwich structures technology in commercial aviation", Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Proceedings of the 7th International Conference on Sandwich Structures, Aalborg, August.
- Hinrichsen, J. (1999), "Airbus A3XX: Materials and technology requirements", Proceedings of the 18th European Conference on Materials for Aerospace Applications, Le Bourget, June.
- Horrigan, D.P.W. and Aitken, R.R. (1998), "Finite element analysis of impact damaged honeycomb sandwich", 1999 LUSAS User Conference, CS503, Issue 1, Finite Element Analysis Ltd.
- Joseph, K., Thomas, S. and Pavithran, C. (1996), "Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites", Polymer, 37(23), 5139-5149. https://doi.org/10.1016/0032-3861(96)00144-9
- Malkapuram, R., Kumar, V. and Negi, Y.S. (2009), "Recent development in natural fiber reinforced polypropylene composites", J. Reinforced Plastics Compos., 28(10), 1169-1189. https://doi.org/10.1177/0731684407087759
- Maniruzzaman, M., Rahman, M.A., Gafur, M.A., Fabritius, H. and Raabe, D. (2012), "Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers", J. Compos. Mater., 46(1), 79-90. https://doi.org/10.1177/0021998311410486
- Matta, V., Kumar, J.S., Venkataraviteja, D. and Reddy, G.B.K. (2017), "Flexural behavior of aluminum honeycomb core sandwich structure", IOP Conference Series: Materials Science and Engineering, 197(1), IOP Publishing, Bristol, United Kingdom.
- Meo, M., Morris, A.J., Vignjevic, R. and Marengo, G. (2003), "Numerical simulations of low-velocity impact on an aircraft sandwich panel", Compos. Struct., 62(3-4), 353-360. https://doi.org/10.1016/j.compstruct.2003.09.035
- Mokhtari, M., Shahravi, M. and Zabihpoor, M. (2018), "Development of dynamic behavior of the novel composite T-joints: Numerical and experimental", Adv. Aircraft Spacecraft Sci., 5(3), 385-400. https://doi.org/10.12989/AAS.2018.5.3.385
- Nguyen, M.Q., Jacombs, S.S., Thomson, R.S., Hachenberg, D. and Scott, M.L. (2005), "Simulation of impact on sandwich structures", Compos. Struct., 67(2), 217-227. https://doi.org/10.1016/j.compstruct.2004.09.018
- Paik, J.K., Thayamballi, A.K. and Kim, G.S. (1999), "The strength characteristics of aluminum honeycomb sandwich panels", Thin-walled Struct., 35(3), 205-231. https://doi.org/10.1016/S0263-8231(99)00026-9
- Petras, A. and Sutcliffe, M.P.F. (1999), "Failure mode maps for honeycomb sandwich panels", Compos. Struct., 44(4), 237-252. https://doi.org/10.1016/S0263-8223(98)00123-8
- Pickering, K.L., Efendy, M.A. and Le, T.M. (2016), "A review of recent developments in natural fibre composites and their mechanical performance", Compos. Part A Appl. Sci. Manufact., 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
- Rao, S., Jayaraman, K. and Bhattacharyya, D. (2012), "Micro and macro analysis of sisal fibre composites hollow core sandwich panels", Compos. Part B Eng., 43(7), 2738-2745. https://doi.org/10.1016/j.compositesb.2012.04.033
- Stocchi, A., Colabella, L., Cisilino, A. and Alvarez, V. (2014), "Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics", Mater. Design, 55, 394-403. https://doi.org/10.1016/j.matdes.2013.09.054
- Styles, M., Compston, P. and Kalyanasundaram, S. (2007), "The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures", Composite Struct., 80(4), 532-538. https://doi.org/10.1016/j.compstruct.2006.07.002
- Vinson, J.R. (2005), "Sandwich structures: Past, present, and future", Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Proceedings of the 7th International Conference on Sandwich Structures, Aalborg, August.
- Wambua, P., Ivens, J. and Verpoest, I. (2003), "Natural fibres: Can they replace glass in fibre reinforced plastics?", Compos. Sci. Technol., 63(9), 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4
- Wu, E. and Jiang, W.S. (1997), "Axial crush of metallic honeycombs", J. Impact Eng., 19(5-6), 439-456. https://doi.org/10.1016/S0734-743X(97)00004-3
- Yamashita, M. and Gotoh, M. (2005), "Impact behavior of honeycomb structures with various cell specifications - Numerical simulation and experiment", J. Impact Eng., 32(1-4), 618-630. https://doi.org/10.1016/j.ijimpeng.2004.09.001
- Zuhri, M.Y.M., Guan, Z.W. and Cantwell, W.J. (2014), "The mechanical properties of natural fibre based honeycomb core materials", Compos. Part B Eng., 58, 1-9.