References
- Ayvaz, Y., Daloglu, A. and Dogangun, A. (1998), "Application of a modified Vlasov model to earthquake analysis of the plates resting on elastic foundations", J. Sound Vib., 212(3), 499-509. https://doi.org/10.1006/jsvi.1997.1394
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey.
- Cook, R.D., Malkus, D.S. and Michael, E.P. (1989), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., Canada.
- Grice, R.M. and Pinnington, R.J. (2002), "Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances", J. Sound Vib., 249(3), 499-527. https://doi.org/10.1006/jsvi.2001.3847
- Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J.Appl. Phys.. 21, 55-58. https://doi.org/10.1063/1.1699420
- Karasin, A. (2016), "Vibration of rectangular plates on elastic foundations by finite grid solution", Int. J. Math. Comput. Meth., 1, 140-145.
- Kutlu, A., Ugurlu, B. and Omurtag, M.H. (2012), "Dynamic response of Mindlin plates resting on arbitrarily orthotropic pasternak foundation and partially in contact with fluid", Ocean Eng., 42, 112-125. https://doi.org/10.1016/j.oceaneng.2012.01.010
- Lok, T.S. and Cheng, Q.H. (2001), "Free and forced vibration of simply supported, orthotropic sandwich panel", Comput. Struct., 79(3), 301-312. https://doi.org/10.1016/S0045-7949(00)00136-X
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Omurtag, M.H., Ozutok, A. and Akoz, A.Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on gateaux differential", Int. J. Numer. Meth. Eng., 40, 295-317. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
- O zdemir, Y.I. (2012), "Development of a Higher Order Finite Element on a Winkler Foundation", Finite Elem. Anal. Des., 48, 1400-1408. https://doi.org/10.1016/j.finel.2011.08.010
- O zdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear lockingfree analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331. https://doi.org/10.12989/sem.2007.27.3.311
- Pasternak, PL. (1954), "New method of calculation for flexible substructures on two-parameter elastic foundation", Gasudarstvennoe Izdatelstoo. Literatury po Stroitelstvu I Architekture, Moskau.
- Senjanovic, I., Tomic, M., Hadzic, N. and Vladimir, N. (2017), "Dynamic finite element formulations for moderately thick plate vibrations based on the modified Mindlin theory", Eng. Struct., 136, 100-113. https://doi.org/10.1016/j.engstruct.2017.01.021
- Sheikholeslami, S.A. and Saidi, A.R. (2013), "Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory", Comput. Struct., 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016
- Si, W.J., Lam, K.Y. and Gang, S.W. (2005), "Vibration analysis of rectangular plates with one or more guided edges via bicubic Bspline method", Shock Vib., 12(5), 363-376. https://doi.org/10.1155/2005/128640
- Tahouneh, V. (2014), "Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations", Struct. Eng. Mech., 50(6), 773-796. https://doi.org/10.12989/sem.2014.50.6.773
- Tedesco, J.W., McDougal, W.G. and Ross, C.A. (1999), Structural Dynamics, Addison Wesley Longman Inc., California.
- Vlasov, V.Z. and Leont'ev, N.N. (1989), Beam, Plates and Shells on Elastic Foundations, GIFML, Moskau.
- Weaver, W. and Johnston, P.R. (1984), Finite Elements for Structural Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey.
- Winkler, E. (1868), "Die Lehre von der Elastizitat und Festigkeit mit besonderer Rucksicht auf ihre Anwendung in der Technik: fur polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc", Dominicius.
- Wirowski, A., Michalak, B. and Gajdzicki, M. (2015), "Dynamic modelling of annular plates of functionally graded structure resting on elastic heterogeneous foundation with two modules", J. Mech., 31(5), 493-504 https://doi.org/10.1017/jmech.2015.23
- Wu, L.H. (2012), "Free vibration of arbitrary quadrilateral thick plates with internal colums and uniform elastic edge supports by Pb-2 Ritz method", Struct. Eng. Mech., 44(3), 267-288. https://doi.org/10.12989/sem.2012.44.3.267
- Wu, L.Y. and Lee, W.H. (2011), "Dynamic analysis of circular plates on elastic foundation by EFHT method", J. Mech., 19(3), 337-347. https://doi.org/10.1017/S172771910000318X
- Zamani, H.A., Aghdam, M.M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on Visco-Pasternak foundation using Higher-Order theory", Comput. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101
- Zenkour, A.M. and Radwan, A.F. (2016), "Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler-Pasternak foundations", J. Sandw. Struct. Mater., 20(2), 1-22.
- Zhang, C., Wang, B. and Zhu, Y. (2017), "Dynamic analysis of the infinite plate on orthotropic foundation subjected to moving loads", J. Mater. Appl., 6(2), 63-69.
- Zienkiewich, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211