DOI QR코드

DOI QR Code

Dynamic behaviour of thick plates resting on Winkler foundation with fourth order element

  • Ozdemir, Yaprak I. (Department of Civil Engineering, Karadeniz Technical University)
  • 투고 : 2018.11.28
  • 심사 : 2019.02.19
  • 발행 : 2019.03.25

초록

This paper focuses on the study of dynamic analysis of thick plates resting on Winkler foundation. The governing equation is derived from Mindlin's theory. This study is a parametric analysis of the reflections of the thickness / span ratio, the aspect ratio and the boundary conditions on the earthquake excitations are studied. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. While using finite element method, a new element is used. This element is 17-noded and it's formulation is derived from using higher order displacement shape functions. C++ program is used for the analyses. Graphs are presented to help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that the 17-noded finite element is used in the earthquake analysis of thick plates. It is shown that the changes in the aspect ratio are more effective than the changes in the aspect ratio. The center displacements of the reinforced concrete thick clamped plates for b/a=1, and t/a=0.2, and for b/a=2, and t/a=0.2, reached their absolute maximum values of 0.00244 mm at 3.48 s, and of 0.00444 mm at 3.48 s, respectively.

키워드

참고문헌

  1. Ayvaz, Y., Daloglu, A. and Dogangun, A. (1998), "Application of a modified Vlasov model to earthquake analysis of the plates resting on elastic foundations", J. Sound Vib., 212(3), 499-509. https://doi.org/10.1006/jsvi.1997.1394
  2. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey.
  3. Cook, R.D., Malkus, D.S. and Michael, E.P. (1989), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., Canada.
  4. Grice, R.M. and Pinnington, R.J. (2002), "Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances", J. Sound Vib., 249(3), 499-527. https://doi.org/10.1006/jsvi.2001.3847
  5. Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J.Appl. Phys.. 21, 55-58. https://doi.org/10.1063/1.1699420
  6. Karasin, A. (2016), "Vibration of rectangular plates on elastic foundations by finite grid solution", Int. J. Math. Comput. Meth., 1, 140-145.
  7. Kutlu, A., Ugurlu, B. and Omurtag, M.H. (2012), "Dynamic response of Mindlin plates resting on arbitrarily orthotropic pasternak foundation and partially in contact with fluid", Ocean Eng., 42, 112-125. https://doi.org/10.1016/j.oceaneng.2012.01.010
  8. Lok, T.S. and Cheng, Q.H. (2001), "Free and forced vibration of simply supported, orthotropic sandwich panel", Comput. Struct., 79(3), 301-312. https://doi.org/10.1016/S0045-7949(00)00136-X
  9. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
  10. Omurtag, M.H., Ozutok, A. and Akoz, A.Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on gateaux differential", Int. J. Numer. Meth. Eng., 40, 295-317. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
  11. O zdemir, Y.I. (2012), "Development of a Higher Order Finite Element on a Winkler Foundation", Finite Elem. Anal. Des., 48, 1400-1408. https://doi.org/10.1016/j.finel.2011.08.010
  12. O zdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear lockingfree analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331. https://doi.org/10.12989/sem.2007.27.3.311
  13. Pasternak, PL. (1954), "New method of calculation for flexible substructures on two-parameter elastic foundation", Gasudarstvennoe Izdatelstoo. Literatury po Stroitelstvu I Architekture, Moskau.
  14. Senjanovic, I., Tomic, M., Hadzic, N. and Vladimir, N. (2017), "Dynamic finite element formulations for moderately thick plate vibrations based on the modified Mindlin theory", Eng. Struct., 136, 100-113. https://doi.org/10.1016/j.engstruct.2017.01.021
  15. Sheikholeslami, S.A. and Saidi, A.R. (2013), "Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory", Comput. Struct., 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016
  16. Si, W.J., Lam, K.Y. and Gang, S.W. (2005), "Vibration analysis of rectangular plates with one or more guided edges via bicubic Bspline method", Shock Vib., 12(5), 363-376. https://doi.org/10.1155/2005/128640
  17. Tahouneh, V. (2014), "Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations", Struct. Eng. Mech., 50(6), 773-796. https://doi.org/10.12989/sem.2014.50.6.773
  18. Tedesco, J.W., McDougal, W.G. and Ross, C.A. (1999), Structural Dynamics, Addison Wesley Longman Inc., California.
  19. Vlasov, V.Z. and Leont'ev, N.N. (1989), Beam, Plates and Shells on Elastic Foundations, GIFML, Moskau.
  20. Weaver, W. and Johnston, P.R. (1984), Finite Elements for Structural Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey.
  21. Winkler, E. (1868), "Die Lehre von der Elastizitat und Festigkeit mit besonderer Rucksicht auf ihre Anwendung in der Technik: fur polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc", Dominicius.
  22. Wirowski, A., Michalak, B. and Gajdzicki, M. (2015), "Dynamic modelling of annular plates of functionally graded structure resting on elastic heterogeneous foundation with two modules", J. Mech., 31(5), 493-504 https://doi.org/10.1017/jmech.2015.23
  23. Wu, L.H. (2012), "Free vibration of arbitrary quadrilateral thick plates with internal colums and uniform elastic edge supports by Pb-2 Ritz method", Struct. Eng. Mech., 44(3), 267-288. https://doi.org/10.12989/sem.2012.44.3.267
  24. Wu, L.Y. and Lee, W.H. (2011), "Dynamic analysis of circular plates on elastic foundation by EFHT method", J. Mech., 19(3), 337-347. https://doi.org/10.1017/S172771910000318X
  25. Zamani, H.A., Aghdam, M.M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on Visco-Pasternak foundation using Higher-Order theory", Comput. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101
  26. Zenkour, A.M. and Radwan, A.F. (2016), "Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler-Pasternak foundations", J. Sandw. Struct. Mater., 20(2), 1-22.
  27. Zhang, C., Wang, B. and Zhu, Y. (2017), "Dynamic analysis of the infinite plate on orthotropic foundation subjected to moving loads", J. Mater. Appl., 6(2), 63-69.
  28. Zienkiewich, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211