DOI QR코드

DOI QR Code

Mechanistic representation of the grading-dependent aggregates resiliency using stress transmission column

  • Sun, Yifei (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University) ;
  • Wang, Zhongtao (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Gao, Yufeng (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University)
  • 투고 : 2017.07.20
  • 심사 : 2019.03.08
  • 발행 : 2019.03.20

초록

A significant influence of the particle size distribution on the resilient behaviour of granular aggregates was usually observed in laboratory tests. However, the mechanisms underlying this phenomenon were rarely reached. In this study, a mechanistic model considering particle breakage is proposed. It is found to be the combined effects of the coefficient of uniformity and the size range between maximum and minimum particle sizes that influences the resilient modulus of granular aggregates. The resilient modulus is found to undergo reduction with evolution of particle breakage by shifting the initial particle size distribution to a broader one.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Central Universities, China Postdoctoral Science Foundation

참고문헌

  1. Aberg, B. (1992), "Void ratio of noncohesive soils and similar materials", J. Geotech. Eng., 118(9), 1315-1334. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1315)
  2. Anderson, W.F. and Fair, P. (2008), "Behavior of railroad ballast under monotonic and cyclic loading", J. Geotech. Geoenviron. Eng., 134(3), 316-327. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(316)
  3. ASTM (2006), Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  4. Coop, M., Sorensen, K., Freitas, T.B. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163. https://doi.org/10.1680/geot.2004.54.3.157
  5. Cunningham, C.N., Evans, T.M. and Tayebali, A.A. (2013), "Gradation effects on the mechanical response of crushed stone aggregate", Int. J. Pavement Eng., 14(3), 231-241. https://doi.org/10.1080/10298436.2012.690518
  6. Einav, I. (2007), "Breakage mechanics-Part I: Theory", J. Mech. Phys. Solids, 55(6), 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003
  7. Guliyev, H.H. (2018), "Geomechanical analysis of elastic parameters of the solid core of the Earth", Geomech. Eng., 14(1), 19-27. https://doi.org/10.12989/GAE.2018.14.1.019
  8. Hardin, B.O. and Kalinski, M.E. (2005), "Estimating the shear modulus of gravelly soils", J. Geotech. Geoenviron. Eng., 131(7), 867-875. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(867)
  9. Indraratna, B., Sun, Y. and Nimbalkar, S. (2016), "Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading", J. Geotech. Geoenviron. Eng., 142(7), 04016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463
  10. Kian, A.R.T., Zakeri, J.A., and Sadeghi, J. (2018), "Experimental investigation of effects of sand contamination on strain modulus of railway ballast", Geomech. Eng., 14(6), 563-570. https://doi.org/10.12989/GAE.2018.14.6.563
  11. Liang, Y. and Li, X. (2014), "An expression for the stiffness coefficient of a rectangular sample of granular material with random packing structure", Granul. Matter, 16(4), 583-595. https://doi.org/10.1007/s10035-014-0492-6
  12. McDowell, G.R. and Li, H. (2016), "Discrete element modelling of scaled railway ballast under triaxial conditions", Granul. Matter, 18(3), 1-10. https://doi.org/10.1007/s10035-015-0597-6
  13. Nimbalkar, S. and Indraratna, B. (2016), "Improved performance of ballasted rail track using geosynthetics and rubber shockmat", J. Geotech. Geoenviron. Eng., 142(8), 04016031. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001491
  14. Nimbalkar, S., Indraratna, B., Dash, S.K. and Christie, D. (2012), "Improved performance of railway ballast under impact loads using shock mats", J. Geotech. Geoenviron. Eng., 138(3), 281-294. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000598
  15. Oztoprak, S., Sargin, S., Uyar, H.K. and Bozbey, I. (2018), "Modeling of pressuremeter tests to characterize the sands", Geomech. Eng., 14(6), 509-517. https://doi.org/10.12989/GAE.2018.14.6.509
  16. Park, T., Kim, H., Tanvir, M., Lee, J. and Moon, S. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/GAE.2018.14.1.099
  17. Radjai, F., Wolf, D.E., Jean, M. and Moreau, J.J. (1998), "Bimodal character of stress transmission in granular packings", Phys. Rev. Lett., 80(1), 61-64. https://doi.org/10.1103/PhysRevLett.80.61
  18. Sevi, A. and Ge, L. (2012), "Cyclic behaviors of railroad ballast within the parallel gradation scaling framework", J. Mater. Civ. Eng., 24(7), 797-804. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000460
  19. Sonmezer, Y.B., Bas, S., Isik, N.S. and Akbas, S.O. (2018), "Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale", Geomech. Eng., 16(4), 435-448. https://doi.org/10.12989/GAE.2018.16.4.435
  20. Suits, L.D., Sheahan, T.C., Patel, A., Bartake, P.P. and Singh, D.N. (2009), "An empirical relationship for determining shear wave velocity in granular materials accounting for grain morphology", Geotech. Test. J., 32(1), 1-10.
  21. Sun, Q.D., Indraratna, B. and Nimbalkar, S. (2014a), "Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast", Geotechnique, 746-751.
  22. Sun, Y. (2017), "Effect of particle angularity and size distribution on the deformation and degradation of ballast under cyclic loading", Ph.D., University of Wollongong, Wollongong, Australia.
  23. Sun, Y., Indraratna, B. and Nimbalkar, S. (2014b), "Threedimensional characterisation of particle size and shape for ballast", Geotech. Lett., 4(3), 197-202. https://doi.org/10.1680/geolett.14.00036
  24. Sun, Y., Shen, Y. and Chen, C. (2018), "A grading parameter for evaluating the grading-dependence of the shear stiffness of granular aggregates", Particuology, 36, 193-198. https://doi.org/10.1016/j.partic.2017.05.006
  25. Tang, L.S., Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. https://doi.org/10.12989/gae.2018.16.2.113
  26. Wichtmann, T. and Triantafyllidis, T. (2009), "Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax", J. Geotech. Geoenviron. Eng., 135(10), 1404-1418. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000096
  27. Wu, Y., Hyodo, M. and Aramaki, M. (2018), "Undrained cyclic shear characteristics and crushing behaviour of silica sand", Geomech. Eng., 14(1), 1-8. https://doi.org/10.12989/GAE.2018.14.1.001
  28. Xiao, Y., Liu, H., Chen, Y. and Jiang, J. (2014), "Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage", J. Geotech. Geoenviron. Eng., 140(12), 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177
  29. Yang, J. and Gu, X.Q. (2013), "Shear stiffness of granular material at small strains: does it depend on grain size?", Geotechnique, 63(2), 165-179. https://doi.org/10.1680/geot.11.P.083