Acknowledgement
Supported by : National Natural Science Foundation
References
- Chakraborty, T., Mishra, S., Loukus, J., Halonen, B. and Bekkala, B. (2016), "Characterization of three himalayan rocks using a split hopkinson pressure bar", Int. J. Rock Mech. Min. Sci., 85, 112-118. https://doi.org/10.1016/j.ijrmms.2016.03.005
- Cheng, W.C., Song, Z.P., Tian, W. and Wang, Z.F. (2018), "Shield tunnel uplift and deformation characterisation: A case study from Zhengzhou metro", Tunn. Undergr. Sp. Technol., 79, 83-95. https://doi.org/10.1016/j.tust.2018.05.002
- Cheng, X.S., Xu, W.W., Yue, C.Q., Du, X.L. and Dowding, C.H. (2014), "Seismic response of fluid-structure interaction of undersea tunnel during bidirectional earthquake", Ocean Eng., 75(1), 64-70. https://doi.org/10.1016/j.oceaneng.2013.11.017
- Davies, E.D.H. and Hunter, S.C. (1963), "The dynamic compression testing of solidsbythe method of the split hopkinson bar", Mech. Phys. Solids, 11(3), 155-179 https://doi.org/10.1016/0022-5096(63)90050-4
- Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, New York, U.S.A.
- Hong, L., Zhou, Z.L., Yin, T.B., Liao, G.Y. and Ye, Z.Y. (2009), "Energy consumption in rock fragmentation at intermediate strain rate", J. Central South Univ., 16(4), 677-682. https://doi.org/10.1007/s11771-009-0112-5
- Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/GAE.2017.13.2.333
- Jayasinghe, L.B., Zhou, H.Y., Goh, A.T.C., Zhao, Z.Y. and Gui, Y.L. (2017), "Pile response subjected to rock blasting induced ground vibration near soil-rock interface", Comput. Geotech., 82, 1-15. https://doi.org/10.1016/j.compgeo.2016.09.015
- Jin, J.F., Li, X.B. and Zhong, H.B. (2013), "Study of dynamic mechanical characteristic of sandstone subjected to threedimensional coupled static-cyclic impact loadings", Chin. J. Rock Mech. Eng., 32(7), 1358-1372.
- Kawamata, Y., Nakayama, M., Towhata, I. and Yasuda, S. (2016), "Dynamic behaviors of underground structures in e-defense shaking experiments", Soil Dyn. Earthq. Eng., 82, 24-39. https://doi.org/10.1016/j.soildyn.2015.11.008
- Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of red, berea and buff sandstones based on different loading rates and water contents", Geomech. Eng., 14(2), 151-159. https://doi.org/10.12989/GAE.2018.14.2.151
- Kishii, T. (2016), "Utilization of underground space in Japan", Tunn. Undergr. Sp. Technol. Incorp. Trenchless Technol. Res., 55, 320-323. https://doi.org/10.1016/j.tust.2015.12.007
- Li, D.W. and Fan, J.H. (2018), "A study of mechanical property of artificial frozen clay under dynamic load", Adv. Civ. Eng., 1-8.
- Li, M., Mao, X.B., Lu, A.H., Tao, J., Zhang, G.H., Zhang, L.Y. and Li, C. (2014), "Effect of specimen size on energy dissipation characteristics of red sandstone under high strain rate", Int. J. Min. Sci. Technol., 24(2), 151-156. https://doi.org/10.1016/j.ijmst.2014.01.002
- Li, X.B., Li, C.J., Cao, W.Z. and Tao, M. (2018), "Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads", Int. J. Rock Mech. Min. Sci., 104, 131-146. https://doi.org/10.1016/j.ijrmms.2018.02.018
- Liu, X.H., Dai, F., Zhang, R. and Liu, J.F. (2015), "Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity", Environ. Earth Sci., 73(10), 5933-5949. https://doi.org/10.1007/s12665-015-4106-3
- Luo, H., Lu, H., Cooper, W.L. and Komanduri, R. (2011), "Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates", Exper. Mech., 51(9), 1499-1510. https://doi.org/10.1007/s11340-011-9475-2
- Mishra, S., Rao, K.S., Gupta, N.K. and Kumar, A. (2018), "Damage to shallow tunnels in different geomaterials under static and dynamic loading", Thin-Walled Struct., 126, 138-149. https://doi.org/10.1016/j.tws.2017.11.051
- Nikadat, N. and Marji, M.F. (2016), "Analysis of stress distribution around tunnels by hybridized fsm and ddm considering the influences of joints parameters", Geomech. Eng., 11(2), 269-288. https://doi.org/10.12989/gae.2016.11.2.269
- Omidvar, M., Iskander, M. and Bless, S. (2012), "Stress-strain behavior of sand at high strain rates", Int. J. Impact Eng., 49(2), 192-213. https://doi.org/10.1016/j.ijimpeng.2012.03.004
- Ranjbarnia, M., Oreste, P., Fahimifar, A. and Arya, A. (2016), "Analytical-numerical solution for stress distribution around tunnel reinforced by radial fully grouted rockbolts", Int. J. Numer. Anal. Meth. Geomech., 40(13), 1844-1862. https://doi.org/10.1002/nag.2517
- Song, B., Chen, W.N. and Luk, V. (2009), "Impact compressive response of dry sand", Mech. Mater., 41(6), 777-785. https://doi.org/10.1016/j.mechmat.2009.01.003
- Song, Z.P., Yang, T.T. and Jiang, A.N. (2016), "Elastic-plastic numerical analysis of tunnel stability based on the closest point projection method considering the effect of water pressure", Math. Prob. Eng., 1-12.
- Wang, J.B., Song, Z.P., Zhao, B.Y., Liu, X.R., Liu, J. and Lai, J.X. (2017), "A study on the mechanical behavior and statistical damage constitutive model of sandstone", Arab. J. Sci. Eng., 43(10), 5179-5192. https://doi.org/10.1007/s13369-017-3016-y
- Yang, R.S., Chen, J., Yang, L.Y., Fang, S.Z. and Liu, J. (2017), "An experimental study of high strain-rate properties of clay under high consolidation stress", Soil Dyn. Earthq. Eng., 92, 46-51. https://doi.org/10.1016/j.soildyn.2016.09.036
Cited by
- Optimization Analysis of Controlled Blasting for Passing through Houses at Close Range in Super-Large Section Tunnels vol.2019, 2019, https://doi.org/10.1155/2019/1941436
- A Theoretical Calculation Method of Influence Radius of Settlement Based on the Slices Method in Tunnel Construction vol.2020, 2020, https://doi.org/10.1155/2020/5804823
- Energy Evolution Principles of Shock-Wave in Sandstone under Unloading Stress vol.24, pp.10, 2019, https://doi.org/10.1007/s12205-020-1691-9
- A New Zoning Method of Blasting Vibration Based on Energy Proportion and Its SVM Classification Models vol.2021, 2019, https://doi.org/10.1155/2021/6697682