DOI QR코드

DOI QR Code

3D stress-fractional plasticity model for granular soil

  • Song, Shunxiang (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University) ;
  • Gao, Yufeng (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University) ;
  • Sun, Yifei (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University)
  • 투고 : 2019.01.18
  • 심사 : 2019.03.05
  • 발행 : 2019.03.20

초록

The present fractional-order plasticity models for granular soil are mainly established under the triaxial compression condition, due to its difficult in analytically solving the fractional differentiation of the third stress invariant, e.g., Lode's angle. To solve this problem, a three dimensional fractional-order elastoplastic model based on the transformed stress method, which does not rely on the analytical solution of the Lode's angle, is proposed. A nonassociated plastic flow rule is derived by conducting the fractional derivative of the yielding function with respect to the stress tensor in the transformed stress space. All the model parameters can be easily determined by using laboratory test. The performance of this 3D model is then verified by simulating multi series of true triaxial test results of rockfill.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Central Universities, China Postdoctoral Science Foundation

참고문헌

  1. Been, K. and Jefferies, M.G. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99
  2. Bui, T.A., Wong, H., Deleruyelle, F. and Zhou, A. (2016), "Constitutive modelling of the time-dependent behaviour of partially saturated rocks", Comput. Geotech., 78, 123-133. https://doi.org/10.1016/j.compgeo.2016.05.004
  3. Chenari, C.J., Fatahi, B., Ghorbani, A. and Alamoti, M.N. (2018), "Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash", Geomech. Eng., 14(6), 533-544. https://doi.org/10.12989/GAE.2018.14.6.533
  4. Guliyev, H.H. (2018), "Geomechanical analysis of elastic parameters of the solid core of the Earth", Geomech. Eng., 14(1), 19-27. https://doi.org/10.12989/GAE.2018.14.1.019
  5. Kian, A.R.T., Zakeri, J.A. and Sadeghi, J. (2018), "Experimental investigation of effects of sand contamination on strain modulus of railway ballast", Geomech. Eng., 14(6), 563-570. https://doi.org/10.12989/GAE.2018.14.6.563
  6. Kumara, J.J. and Hayano, K. (2016), "Importance of particle shape on stress-strain behaviour of crushed stone-sand mixtures", Geomech. Eng., 10(4), 455-470. https://doi.org/10.12989/gae.2016.10.4.455
  7. Li, X. and Dafalias, Y. (2000), "Dilatancy for cohesionless soils", Geotechnique, 50(4), 449-460. https://doi.org/10.1680/geot.2000.50.4.449
  8. Li, X. and Wang, Y. (1998), "Linear representation of steady-state line for sand", J. Geotech. Geoenviron. Eng., 124(12), 1215-1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
  9. Liu, M. and Gao, Y. (2016), "Constitutive modeling of coarsegrained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity", Int. J. Geomech., 17(5), 04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759
  10. Liu, M., Zhang, Y. and Zhu, H. (2017), "3D elastoplastic model for crushable soils with explicit formulation of particle crushing", J. Eng. Mech., 143(12), 04017140. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001361
  11. Lu, D., Liang, J., Du, X., Ma, C. and Gao, Z. (2019), "Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule", Comput. Geotech., 105, 277-290. https://doi.org/10.1016/j.compgeo.2018.10.004
  12. Lu, D., Ma, C., Du, X., Jin, L. and Gong, Q. (2016), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2), 04016058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
  13. Masoumi, H., Douglas, K. and Russell, A. (2015), "A bounding surface plasticity model for intact rock exhibiting sizedependent behaviour", Rock Mech. Rock Eng., 49(1), 47-62. https://doi.org/10.1007/s00603-015-0744-8
  14. Matsuoka, H., Yao, Y. and Sun, D. (1999), "The cam-clay models revised by the SMP criterion", Soils Found., 39(1), 81-95. https://doi.org/10.3208/sandf.39.81
  15. Mosayebi, S., Zakeri, J. and Esmaeili, M. (2016), "A comparison between the dynamic and static stiffness of ballasted track: A field study", Geomech. Eng., 11(6), 757-769. https://doi.org/10.12989/gae.2016.11.6.757
  16. Nakai, T. and Hinokio, M. (2004), "A simple elastoplastic model for normally and over consolidated soils with unified material parameters", Soils Found., 44(2), 53-70. https://doi.org/10.3208/sandf.44.2_53
  17. Nimbalkar, S. and Indraratna, B. (2016), "Improved performance of ballasted rail track using geosynthetics and rubber shockmat", J. Geotech. Geoenviron. Eng., 142(8), 04016031. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001491
  18. Nimbalkar, S., Annapareddy, V.S.R. and Pain, A. (2018), "A simplified approach to assess seismic stability of tailings dams", J. Rock Mech. Geotech. Eng., 10(6), 1082-1090. https://doi.org/10.1016/j.jrmge.2018.06.003
  19. Oztoprak, S., Sargin, S., Uyar, H.K. and Bozbey, I. (2018), "Modeling of pressuremeter tests to characterize the sands", Geomech. Eng., 14(6), 509-517. https://doi.org/10.12989/GAE.2018.14.6.509
  20. Park, T., Kim, H., Tanvir, M., Lee, J. and Moon, S. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/GAE.2018.14.1.099
  21. Pastor, M., Zienkiewicz, O.C. and Chan, A.H.C. (1990), "Generalized plasticity and the modelling of soil behavior", Int. J. Numer. Anal. Meth. Geomech., 14(3), 151-190. https://doi.org/10.1002/nag.1610140302
  22. Podlubny, I. (1998), Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, California, U.S.A.
  23. Schofield, A. and Wroth, P. (1968), Critical State Soil Mechanics, McGraw-Hill London, U.K.
  24. Shi, W.C. (2008), "True triaxial tests on coarse-grained soils and study on constitutive model", Ph.D., Hohai University, Nanjing, China.
  25. Shi, X.S. and Herle, I. (2016), "Analysis of the compression behavior of artificial lumpy composite materials", Int. J. Numer. Anal. Meth. Geomech., 40(10), 1438-1453. https://doi.org/10.1002/nag.2493
  26. Shi, X.S. and Herle, I. (2017), "Numerical simulation of lumpy soils using a hypoplastic model", Acta Geotech., 12(2), 349-363. https://doi.org/10.1007/s11440-016-0447-7
  27. Sonmezer, Y.B., Bas, S., Isik, N.S. and Akbas, S.O. (2018), "Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale", Geomech. Eng., 16(4), 435-448. https://doi.org/10.12989/GAE.2018.16.4.435
  28. Sumelka, W. (2014), "Fractional viscoplasticity", Mech. Res. Commun., 56, 31-36. https://doi.org/10.1016/j.mechrescom.2013.11.005
  29. Sumelka, W. and Nowak, M. (2016), "Non-normality and induced plastic anisotropy under fractional plastic flow rule: A numerical study" Int. J. Numer. Anal. Meth. Geomech., 40(5), 651-675. https://doi.org/10.1002/nag.2421
  30. Sun, Y. and Shen, Y. (2017), "Constitutive model of granular soils using fractional order plastic flow rule", Int. J. Geomech., 17(8), 04017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000904
  31. Sun, Y. and Xiao, Y. (2017), "Fractional order plasticity model for granular soils subjected to monotonic triaxial compression", Int. J. Solids Struct., 118, 224-234. https://doi.org/10.1016/j.ijsolstr.2017.03.005
  32. Sun, Y., Gao, Y. and Chen, C. (2019), "Critical-state fractional model and its numerical scheme for isotropic granular soil considering state-dependence", Int. J. Geomech., 13(9), 04018202.
  33. Sun, Y., Song, S., Xiao, Y. and Zhang, J. (2017), "Development and application of state-dependent fractional plasticity in modeling the non-associated behavior of granular aggregates", Acta Mech. Solida Sin., 30(5), 507-519. https://doi.org/10.1016/j.camss.2017.09.002
  34. Tian, Y. and Yao, Y.P. (2017), "A simple method to describe threedimensional anisotropic failure of soils", Comput. Geotech., 92, 210-219. https://doi.org/10.1016/j.compgeo.2017.08.004
  35. Wang, W., Martin, P.R., Sheikh, M.N. and Hadi, M.N. (2018a), "Eccentrically loaded FRP confined concrete with different wrapping schemes", J. Compos. Construct., 22(6), 04018056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000898
  36. Wang, W., Sheikh, M.N., Al-Baali, A.Q. and Hadi, M.N.S. (2018b), "Compressive behaviour of partially FRP confined concrete: Experimental observations and assessment of the stress-strain models", Construct. Build. Mater., 192, 785-797. https://doi.org/10.1016/j.conbuildmat.2018.10.105
  37. Wang, W., Wu, C. and Liu, Z. (2019), "Compressive behavior of hybrid double-skin tubular columns with ultra-high performance fiber-reinforced concrete (UHPFRC)", Eng. Struct., 180, 419-441. https://doi.org/10.1016/j.engstruct.2018.11.048
  38. Wu, Y., Hyodo, M. and Aramaki, M. (2018), "Undrained cyclic shear characteristics and crushing behaviour of silica sand", Geomech. Eng., 14(1), 1-8. https://doi.org/10.12989/GAE.2018.14.1.001
  39. Yao, Y. and Wang, N. (2014), "Transformed stress method for generalizing soil constitutive models", J. Eng. Mech., 140(3), 614-629. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000685
  40. Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behaviour of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207