DOI QR코드

DOI QR Code

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher (Institute of Geology, University of the Punjab) ;
  • Ahmed, Nisar (Institute of Geology, University of the Punjab) ;
  • Khalid, Perveiz (Institute of Geology, University of the Punjab) ;
  • Badar, Muhammad A. (Institute of Geology, University of the Punjab) ;
  • Akram, Sohail (Institute of Geology, University of the Punjab) ;
  • Hussain, Mureed (Department of Marine Geology, Lasbela University of Agriculture, Water and Marine Sciences) ;
  • Anwar, Muhammad A. (Institute of Geology, University of the Punjab) ;
  • Mahmood, Azhar (Petrophysics, Software Integrated Solution (SIS) Data Services Schlumberger) ;
  • Ali, Shahid (Institute of Geology, University of the Punjab) ;
  • Rehman, Anees U. (Department of Earth Sciences, Quaid-I-Azam University)
  • Received : 2017.09.27
  • Accepted : 2019.02.22
  • Published : 2019.03.20

Abstract

The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Keywords

References

  1. Ahmed, N., Badar, M.A., Anwar, M.A., Ahmad, M., Rehman, A.U. and Khalid, P. (2017a), "Application of spreadsheet program in p converted p and s waves amplitudes modeling at geological interface and to identify gas sands", Geophys. Res. J., 4(1), 11-25.
  2. Ahmed, N., Kausar, T., Khalid, P. and Akram, S. (2018), "Assessment of reservoir rock properties from rock physics modeling and petrophysical analysis of borehole logging data to lessen uncertainty in formation characterization in Ratana Gas Field, northern Potwar, Pakistan", J. Geol. Soc. India, 91(6), 736-742. https://doi.org/10.1007/s12594-018-0932-8
  3. Ahmed, N., Khalid, P. Ali, T., Ahmad, S.R. and Akhtar, S. (2016), "Differentiation of pore fluids using amplitude versus offset attributes in clastic reservoirs, Middle Indus Basin, Pakistan", Arab. J. Sci. Eng., 41(6), 2315-2323. https://doi.org/10.1007/s13369-015-1992-3
  4. Ahmed, N., Khalid, P. Shafi, H.M.B. and Connolly, P. (2017b), "DHIs evaluation by combining rock physics simulation and statistical techniques for fluids identification of Cambrian to Cretaceous clastic reservoirs in Pakistan", Acta Geophys., 65(5), 991-1007. https://doi.org/10.1007/s11600-017-0070-5
  5. Ahmed, N., Khalid, P., Ghazi, S. and Anwar, A.W. (2014), "AVO forward modeling and attributes analysis for fluid's identification: A case study", Acta Geod. Geophys., 50(4), 377-390. https://doi.org/10.1007/s40328-014-0097-x
  6. Aki, K. and Richards, P.G. (1980), Quantitative Seismology: Theory and Methods, W. H. Freeman and Co., 726.
  7. Azzam, S.S. and Shazly, T.F. (2012), "A comparison between porosity derived from seismic reflection data and that computed from well log data, Al Amal Field, Gulf of Suez, Egypt", Petrol. Sci. Technol., 30(1), 16-27. https://doi.org/10.1080/10916461003752520
  8. Baig, M.O., Harris, N.B., Ahmed, H. and Baig, M.O.A. (2016), "Controls on reservoir diagenesis in the Lower Goru sandstone formation, Lower Indus Basin, Pakistan", J. Petrol. Geol., 39(1), 29-48. https://doi.org/10.1111/jpg.12626
  9. Batzle, M.L. and Wang, Z. (1992), "Seismic properties of pore fluids", Geophysics, 57(11), 1396-1408. https://doi.org/10.1190/1.1443207
  10. Booth, A.D., Emir, E. and Diez, A. (2016), "Approximations to seismic AVA responses: Validity and potential in glaciological applications", Geophysics, 81(1), WA1-W11. https://doi.org/10.1190/geo2016-0808-TIOgeo.1
  11. Castagna, J.P., Batzle, M.L. and Eastwood, R.L. (1985), "Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks", Geophysics, 50(4), 571-581. https://doi.org/10.1190/1.1441933
  12. Castagna, J.P., Swan, H.S. and Foster, D.J. (1998), "Framework for the interpretation of AVO intercept and gradient", Geophysics, 63(3), 948-956. https://doi.org/10.1190/1.1444406
  13. Chapman, M., Liu, E. and Li, X.Y. (2006), "The influence of fluidsensitive dispersion and attenuation on AVO analysis", Geophys. J. Int., 167(1), 89-105. https://doi.org/10.1111/j.1365-246X.2006.02919.x
  14. Gassmann, F. (1951), "Elastic waves through a packing of spheres", Geophysics, 16(4), 673-685. https://doi.org/10.1190/1.1437718
  15. Golikov, P., Avseth, P., Stovas, A. and Bachrach, R. (2013), "Rock physics interpretation of heterogeneous and anisotropic turbidite reservoirs", Geophys. Prospect., 61(2), 448-457. https://doi.org/10.1111/j.1365-2478.2012.01073.x
  16. Hedlin, K. (2000), Pore Space Modulus and Extraction Using AVO, in SEG Technical Program Expanded Abstracts 2000, Proceedings of the 70th Annual International Meeting, Society of Exploration Geophysicists, 170-173.
  17. Hill, R. (1952), "The elastic behavior of a crystalline aggregate", Proc. Phys. Soc. Sec. A., 65(5), 349-354. https://doi.org/10.1088/0370-1298/65/5/307
  18. Innanen, K.A. (2011), "Inversion of the seismic AVF/AVA signatures of highly attenuative targets", Geophysics, 76(1), R1-R14. https://doi.org/10.1190/1.3611021
  19. Kadri, I.B. (1995), Petroleum Geology of Pakistan, Pakistan Petroleum Ltd, Karachi, Pakistan.
  20. Kazmi, A.H., and Rana, R.A. (1982), "Tectonic map of Pakistan, bf.", Geol. Sum. Pakistan, Scale, 1(2).
  21. Khalid, P., and Ahmed, N. (2016), "Modulus defect, velocity dispersion and attenuation in partially-saturated reservoirs of Jurassic sandstone, Indus Basin, Pakistan", Stud. Geophys. Geod., 60(1), 112-129. https://doi.org/10.1007/s11200-015-0804-2
  22. Khalid, P., Brosta, D. Nichita, D.V. and Blanco, J. (2014), "A modified rock physics model for analysis of seismic signatures of low gas-saturated rocks", Arab. J. Geosci., 7(8), 3281-3295 https://doi.org/10.1007/s12517-013-1024-0
  23. Khan, K.A., Anees, A. and Ahmed, N. (2015), "An educational tool for Zoeppritz equations and their various approximations", Geophys. Res. J., 3(1), 49-54.
  24. Liu, C., Gosh, D.P., Salim, A.M.A. and Chow, W.S. (2019), "A new fluid factor and its application using a deep learning approach", Geophys. Prospect., 67(1), 140-149. https://doi.org/10.1111/1365-2478.12712
  25. Mavko, G., Mukerji, T. and Dvorkin, J. (2009), The Rock Physics Handbook, Cambridge University Press, Cambridge, U.K.
  26. Murphy, W., Reischer, A. and Hsu, K. (1993), "Modulus decomposition of compressional and shear velocities in sand bodies", Geophysics, 58(2), 227-239. https://doi.org/10.1190/1.1443408
  27. Narongsirikul, S., Mondol, N.H. and Jahren, J. (2019), "Acoustic and petrophysical properties of mechanically compacted overconsolidated sands: Part 2-Rock physics modelling and applications", Geophys. Prospect., 67(1), 114-127. https://doi.org/10.1111/1365-2478.12692
  28. Reuss, A. (1929), "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", Z. Angew. Math. Mech., 9(1), 49-58. https://doi.org/10.1002/zamm.19290090104
  29. Shuey, R.T. (1985), "A simplification of Zoeppritz equations", Geophysics, 50(4), 609-614. https://doi.org/10.1190/1.1441936
  30. Silin, D. and Goloshubin, G. (2010), "An asymptotic model of seismic reflection from a permeable layer", Transp. Porous Med., 83(1), 233-256 https://doi.org/10.1007/s11242-010-9533-8
  31. Singha, D.K. and Chatterjee, R. (2017), "Rock physics modeling in sand reservoir through well log analysis, Krishna-Godavari basin, India", Geomech. Eng., 13(1), 99-117. https://doi.org/10.12989/gae.2017.13.1.099
  32. Smith, G.C. and Gidlow, P.M. (1987), "Weighted stacking for rock property estimation and detection of gas", Geophys. Prospect., 35(9), 993-1014. https://doi.org/10.1111/j.1365-2478.1987.tb00856.x
  33. Voigt, W. (1910), "Weiteres zu der Bernoullischen Methode der Bestimmung der optischen Konstanten von Metallen", Ann. D. Physik, 338(14), 833-838. https://doi.org/10.1002/andp.19103381410
  34. Wang, Z. (2001), "Fundamentals of seismic rock physics", Geophysics, 66(2), 398-412. https://doi.org/10.1190/1.1444931
  35. Wood, A.B. (1941), A Textbook of Sound, G. Bell and Sons, London, U.K.
  36. Wu, X., Chapman, M., Li, X.Y. and Boston, P. (2014), "Quantitative gas saturation estimation by frequency-dependent amplitude-versus-offset analysis", Geophys. Prospect., 62(6), 1224-1237. https://doi.org/10.1111/1365-2478.12179
  37. Xu, D., Wang, Y., Gan, Q. and Tang, J. (2011), "Frequencydependent seismic reflection coefficient for discriminating gas reservoirs", J. Geophys. Eng., 8(4), 508-513. https://doi.org/10.1088/1742-2132/8/4/003
  38. Zhang, S., Chen, S. and Li, H.Y. (2016), "Modeling and analysis of frequency-dependent AVO attributes for fluids saturation prediction", Proceedings of the 78th EAGE Conference and Exhibition, Vienna, Austria, May-June.
  39. Zhao, L., Han, D., Yao, Q., Zhou, R. and Yan, F. (2015), "Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks", Geophysics, 80(3), 221-235. https://doi.org/10.1190/geo2014-0307.1
  40. Zhi, L., Chen, S. and Li, X. (2016), "Amplitude variation with angle inversion using the exact Zoeppritz equations-Theory and methodology", Geophysics, 81(2), N1-N15. https://doi.org/10.1190/geo2014-0582.1
  41. Zhu, F., Gibson Jr, R.L., Watkins, J.S. and Yuh, S.H. (2000), "Distinguishing fizz gas from commercial gas reservoirs using multicomponent seismic data", Lead. Edge, 19(11), 1238-1245. https://doi.org/10.1190/1.1438514
  42. Zoeppritz, K. (1919), "Erdbebenwellen VIIIB, on the reflection and propagation of seismic waves", Gottinger Nachrichten, 1, 66-84.