DOI QR코드

DOI QR Code

Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression

  • Khan, Qasim S. (Civil Engineering Department, University of Engineering and Technology) ;
  • Sheikh, M. Neaz (School of Civil, Mining and Environmental Engineering, University of Wollongong) ;
  • Hadi, Muhammad N.S. (School of Civil, Mining and Environmental Engineering, University of Wollongong)
  • Received : 2018.08.22
  • Accepted : 2019.03.13
  • Published : 2019.03.25

Abstract

This research study investigates experimentally and analytically the axial compressive behaviour of Concrete Filled Fiber Reinforced Polymer Tube (CFFT) columns with and without Fiber Reinforced Polymer (FRP) bars. The experimental program comprises five circular columns of 204-206 mm outer diameter and 800-812 mm height. All columns were tested under concentric axial compressive loads. It was found that CFFT columns with and without FRP bars achieved higher peak axial compressive loads and corresponding axial deformations than conventional steel reinforced concrete (RC) column. The contribution of FRP bars was about 12.1% of the axial compressive loads carried by CFFT columns reinforced with FRP bars. Axial load-axial deformation ($P-{\delta}$) curves of CFFT columns were analytically constructed, which mapped well with the experimental $P-{\delta}$ curves. Also, an equation was proposed to predict the axial compressive load capacity of CFFT columns with and without FRP bars, which adequately considers the contributions of the circumferential confinement provided by FRP tubes and lower ultimate strength of FRP bars in compression than in tension.

Keywords

References

  1. ACI 318M-11 (2011), Building code requirements for structural concrete and commentary; American Concrete Institute. Farmington Hills, MI 48331, USA.
  2. ACI 440.1R-06 (2006), Guide for the design and construction of structural concrete reinforced with FRP bars; American Concrete Institute, USA.
  3. ACI 440.2R-08 (2008), Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures; American Concrete Institute, USA.
  4. ACI 440.1R-15 (2015), Guide for the design and construction of structural concrete reinforced with FRP bars; American Concrete Institute, USA.
  5. Afifi, M., Mohamed, H. and Benmokrane, B. (2014a), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438
  6. Afifi, M., Mohamed, H. and Benmokrane, B. (2014b), "Strength and axial behaviour of circular concrete columns reinforced with CFRP bars and spirals", J. Compos. Constr., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430
  7. Alsayed, S.H., Al-Salloum, Y.A., Almusallam, T.H. and Amjad, M.A. (1999), "Concrete columns reinforced by GFRP Rods", Proceedings of the FRPRCS-4.
  8. AS 1012.9-1999 (1999), Methods of testing concrete, Method 9: Determination of the compressive strength of concrete specimens; Standards Australia. Sydney, Australia.
  9. AS 1391-2007 (2007), Metallic materials - Tensile testing at ambient temperature, Standards Australia, Sydney, Australia.
  10. ASTM D695-10 (2010), Standard Test Method for Compressive Properties of Rigid Plastics; American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA.
  11. ASTM D7205/D7205M-11 (2011), Standard Test Method for tensile properties of Fibre Reinforced Polymer Matrix Composite Bars; American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: USA.
  12. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-999. https://doi.org/10.12989/scs.2015.19.4.967
  13. Chaallal, O. and Benmokrane, B. (1993), "Physical and mechanical performance of an innovative glass fibre reinforced plastic rod", Can. J. Civil Eng., 20(2), 254-268. https://doi.org/10.1139/l93-031
  14. CSA-S806-12 (2012), Design and construction of building components with fibre reinforced polymers; Canadian Standards Association, ON, Canada.
  15. CST (2014), CST COMPOSITES, Caringbah NSW 1495, Australia. URL: http://www.cstcomposites.com/products-andservices/tubes-rods-and-components/
  16. Deitz, D., Harik, I. and Gesund, H. (2003), "Physical properties of glass fibre reinforced polymer rebars in compression", J. Compos. Constr., 7(4), 363-366. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(363)
  17. De Luca, A., Matta, F. and Nanni, A. (2010), "Behaviour of full scale glass fibre reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107(5), 589-596.
  18. Hadhood, A., Mohamed, H. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations", J. Compos. Constr.
  19. Hadi, M.N.S., Pham, T. and Lei, X. (2013), "New method of strengthening reinforced concrete square columns by circularizing and wrapping with Fibre-Reinforced Polymer or Steel Straps", J. Compos. Constr., 17(2), 229-238. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000335
  20. Hadi, M.N.S., Khan, Q.S. and Sheikh, M.N. (2016), "Axial and flexural behaviour of unreinforced and FRP bar reinforced circular concrete filled FRP tube columns", Constr. Build. Mater., 122, 43-53. https://doi.org/10.1016/j.conbuildmat.2016.06.044
  21. Hadi, M.N.S., Karim, H. and Sheikh, M.N. (2017), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", J. Compos. Constr.
  22. Hong, W.K. and Kim, C. (2004), "Behaviour of concrete columns confined by carbon composites tubes", Can. J. Civil Eng., 31(2), 178-188. https://doi.org/10.1139/l03-078
  23. ISO 10406-1-15 (2015), Fibre reinforced polymer (FRP) reinforcement of concrete - Test methods - Part 1: FRP bars and grids; International Standard, Switzerland.
  24. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model", Steel Compos. Struct., Int. J., 21(4), 921-947. https://doi.org/10.12989/scs.2016.21.4.921
  25. Khan, Q.S., Sheikh, M.N. and Hadi, M. (2017), "Axial-Flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars", J. Compos. Constr., 21(3), 04016109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000771
  26. Khan, Q.S., Sheikh, M.N. and Hadi, M. (2018a), "Predicting strength and strain enhancement ratios of circular fiberreinforced polymer tube confined concrete under axial compression using artificial neural networks", Adv. Struct. Eng., 1-18.
  27. Khan, Q.S., Sheikh, M.N. and Hadi, M. (2018b), "Concrete filled carbon FRP tube (CFRP-CFFT) columns with and without CFRP reinforcing bars: Axial and flexural interactions", J. Compos. Part B: Eng., 133, 42-52. https://doi.org/10.1016/j.compositesb.2017.09.025
  28. Kobayashi, K. and Fujisaki, T. (1995), "Compressive behaviour of FRP reinforcement in non-prestressed concrete members", Proceedings of the Second International RILEM Symposium (FRPRCS-2), L.Taerwe, Editor.
  29. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
  30. Mirmiran, A., Shahawy, M., Samaan, M., El Echary, H., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRP confined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
  31. Mohamed, H. and Masmoudi, R. (2008), "Compressive behaviour of reinforced concrete filled FRP tubes", ACI-SP, SP-257, 91-108.
  32. Mohamed, H. and Masmoudi, R. (2010), "Axial load capacity of concrete-filled FRP tube columns: Experimental versus theoretical predictions", J. Compos. Constr., 14(2), 231-243. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000066
  33. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590
  34. Ozbakkaloglu, T. (2013), "Compressive behaviour of concretefilled FRP tube columns: Assessment of critical column parameters", Eng. Struct., 51, 188-199. https://doi.org/10.1016/j.engstruct.2013.01.017
  35. Ozbakkaloglu, T. and Oehlers, D.J. (2008), "Concrete filled square and rectangular FRP Tubes under axial compression", J. Compos. Constr., 12(4), 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)
  36. Ozbakkaloglu, T. and Saatcioglu, M. (2004), "Rectangular stress block for high strength concrete", ACI Struct. J., 101(4), 475-483.
  37. Ozbakkaloglu, T. and Vincent, T. (2013), "Axial compressive behaviour of circular high strength concrete filled FRP tubes", J. Compos. Constr., 04013037-1-11. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000410
  38. Pantelides, C., Gibbons, M. and Reaveley, L. (2013), "Axial load behaviour of concrete columns confined with GFRP spirals", J. Compos. Constr., 17(3), 305-313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357
  39. Park, J. and Yoo, J. (2015), "Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet", Steel Compos. Struct., Int. J., 19(2), 441-465. https://doi.org/10.12989/scs.2015.19.2.441
  40. Park, J.H., Jo, B.W., Yoon, S.J. and Park, S.K. (2011), "Experimental investigation on the structural behaviour of concrete filled FRP tubes with/without steel rebar", KSCE J. Civil Eng., 15, 337-345. https://doi.org/10.1007/s12205-011-1040-0
  41. Ramezanpour, M., Morshed, R. and Eslami, A. (2018), "Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars", Struct. Eng. Mech., Int. J., 67(1), 45-52.
  42. Richard, R.M. and Abbott, B.J. (1975), "Versatile elastic plastic stress strain formula", J. Eng. Mech. Div., 101, 511-515. https://doi.org/10.1061/JMCEA3.0002047
  43. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), Model of concrete confined by Fibre composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  44. Shahraki, M., Sohrabi, M.R., Azizyan, G.R. and Narmashiri, K. (2018), "Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads", Struct. Eng. Mech., Int. J., 67(2), 207-217.
  45. Thomas, J. and Ramadass, S. (2015), "Design for shear strength of concrete beams longitudinally reinforced with GFRP bars", Struct. Eng. Mech., Int. J., 53(1), 41-55. https://doi.org/10.12989/sem.2015.53.1.041
  46. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass Fibre-Reinforced Polymer bars", ACI Struct. J., 109(4), 551-558.
  47. Vincent, T. and Ozbakkaloglu, T. (2013a), "Influence of concrete strength and confinement method on axial compressive behaviour of FRP confined high and ultra-high strength concrete", Compos. Part B: Eng., 50, 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017
  48. Vincent, T. and Ozbakkaloglu, T. (2013b), "Influence of fibre orientation and specimen end condition on axial compressive behaviour of FRP confined concrete", Constr. Build. Mater., 47, 814-826. https://doi.org/10.1016/j.conbuildmat.2013.05.085
  49. V-ROD (2012), Composite reinforcing rods technical data sheet, Largs Bay, SA, Australia.
  50. Wang, W., Sheikh, M.N., Hadi, M.N.S., Gao, D. and Chen, G. (2017), "Behaviour of concrete encased concrete filled FRP tube (CCFT) columns under axial compression", Eng. Struct., 147, 256-268. https://doi.org/10.1016/j.engstruct.2017.05.061
  51. Wang, W., Martin, P.R., Sheikh, M.N. and Hadi, M.N.S. (2018), "Eccentrically loaded FRP confined concrete with different wrapping schemes", J. Compos. Constr., 22(6), 04018056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000898